Welsh Government M4 Corridor around Newport -Motorway to the South of Newport Local Model Validation Report

14-9235

Issue | July 2014

This report takes into account the particular instructions and requirements of our client. It is not intended for and should not be relied upon by any third party and no responsibility

is undertaken to any third party.

Job number 117300

Ove Arup & Partners Ltd 4 Pierhead Street Capital Waterside Cardiff CF10 4QP United Kingdom www.arup.com

ARUP

Contents

			Page
1	Introd	luction	1
	1.1	Scheme Background	1
	1.2	Base Year Traffic Assignment Model	2
	1.3	Report Structure	3
2	Overv	view of Traffic Model	4
	2.1	Traffic Model Requirements	4
	2.2	Model Software	4
	2.3	Study Area	6
	2.4	Requirement for Variable Demand Modelling	7
	2.5	Land Use Modelling, Public Transport and Slow Modes	9
	2.6	Model Time Periods	9
	2.7	Model User Classes	10
3	Data S	Sources	11
	3.1	Overview	11
	3.2	Welsh Government Data	11
	3.3	Classified Junction Turning Counts	11
	3.4	Classified Link Counts	15
	3.5	Automatic Traffic Counts	17
	3.6	Journey Time Surveys	19
	3.7	Data Processing	19
4	Mode	l Network Development	21
	4.1	Overview	21
	4.2	Network Changes	21
	4.3	Network Review	24
	4.4	Link Speeds	24
5	Trip N	Matrix Development	27
	5.1	Zone System	27
	5.2	Matrix Development	31
6	Assig	nment Methodology	32
	6.1	Assignment Algorithm	32
	6.2	Generalised Costs	32
	6.3	Assignment Convergence	33
7	Mode	l Calibration	34

	7.1	Network Checks	34
	7.2	Matrix Estimation	34
	7.3	Traffic Flow Calibration	37
8	Mode	l Validation	51
	8.1	Introduction	51
	8.2	Flow Validation	51
	8.3	Proportion of Heavy Goods Vehicles	55
	8.4	Journey Time Validation	57
9	Varia	ble Demand Model Calibration	61
	9.1	Introduction	61
	9.2	The Need for Variable Demand Modelling	61
	9.3	Responses in Variable Demand Modelling	61
	9.4	Convergence	63
	9.5	Realism Testing	63
	9.6	Summary	67
10	Concl	usions	68

Figures

Figure 2.1 The SATURN Modelling Process Figure 2.2 M4 Traffic Model Study Area Figure 2.3 Average Hourly Weekday Traffic Volumes, Junction 26-27, May 2012 Figure 3.1 Classified Turning Counts - West Area Figure 3.2 Classified Turning Counts - East Area Figure 3.3 Classified Link Counts Figure 3.4 Automatic Traffic Counts Figure 3.5 Journey Time Survey Routes Figure 4.1 Model Network Figure 4.2 Model Simulation Network Figure 5.1 UK Zone Plan Figure 5.2 South East Wales Zone Plan Figure 5.3 Newport Area Zone Plan

Figure 7.1 Calibration / Validation Screenlines

Appendices

Appendix A

M4 Speed-Flow Curves from MIDAS Data

Appendix B

Journey Time Validation Graphs

Appendix C

Details of Variable Demand Model Calibration

1 Introduction

1.1 Scheme Background

The M4 in South Wales forms part of the Trans-European Transport Network (TEN-T), which provides connections throughout Europe by road, rail, sea and air. The M4 plays a key strategic role in connecting South Wales with the rest of Europe, providing links to Ireland via the ports in South West Wales and to England and mainland Europe to the east. It is a key east-west route being the main gateway into South Wales and also one of the most heavily used roads in Wales.

In March 1989, the Secretary of State for Wales commissioned the South Wales Area Traffic Study (SWATS) to review traffic patterns over part of the trunk road network in South Wales in order to identify problem areas and propose possible solutions. The SWATS Report (1990) identified the need for substantial improvement to the M4 to address a growing capacity issue on the motorway, in particular the section between Magor and Castleton. As a consequence, a proposal for a new section of dual 3-lane motorway (to be known as the M4 Relief Road) was included in the Welsh Trunk Road Forward Programme in 1991.

This proposal was the subject of public consultation during 1993 and 1994, following which the Preferred Route for the M4 Relief Road was announced in 1995, and subsequently modified in 1997 to allow for development of the LG site at Duffryn.

In December 2004, the Minister for Economic Development and Transport reported on the outcome of his review of transport programmes. One of the conclusions was that additional capacity was required on the M4 motorway in South East Wales, in order to reduce congestion, improve resilience and remove an obstacle to greater prosperity along the whole corridor through to Swansea and West Wales.

In addition to widening the motorway north of Cardiff, the Minister announced proposals to develop a New M4 south of Newport between Magor and Castleton. At the same time, it was announced that the existing route could include priority measures for public transport and multiple occupancy vehicles. This meant that the M4 Relief Road scheme was re-named as the New M4 Project and advanced from the 'On Hold' category into Phase 2 of the Trunk Road Forward Programme, ie schemes that could start on site by 2010, subject to the satisfactory completion of statutory procedures and availability of finance.

Following a review of the Preferred Route and the Junction Strategy, the proposed scheme was amended to take account of the deletion of the Duffryn Link from the Newport Unitary Development Plan and the cessation of steelmaking activities at the Corus site at Llanwern.

However, a written statement in July 2009 by the then Deputy First Minister Ieuan Wyn Jones announced that the New M4 was not affordable, while accepting that there was a "need to urgently address safety and capacity issues on the existing route" through the introduction of "a range of measures". The M4 Corridor

Enhancement Measures (CEM) Programme was thus initiated to create a package of measures addressing resilience, safety and reliability issues within the M4 corridor between Magor and Castleton.

Under the M4 CEM Programme, a long list of possible solutions was explored. No single solution was seen to deliver all the objectives set for transport provision along the M4 Corridor. However, packages that combined public transport, highway and other travel solutions were identified for appraisal. These included on line widening of the M4 between Junctions 24 and 29 as well as improvement to the existing road network to the south of the city centre and a new dual carriageway all-purpose road to the south of Newport.

As part of the M4 CEM Programme, a comprehensive engagement process was launched in September 2010 culminating in a Consultation held between March and July 2012. This has resulted in public support for the provision of an additional high quality road to the south of Newport.

An M4 CEM WelTAG¹ Stage 1 Appraisal concluded that the following measures are worthy of further consideration:

- a new dual carriageway route to the south of Newport;
- public transport enhancement; and
- common measures.

Recent initiatives including discussions between Welsh Government and HM Treasury/Department for Transport, have created potential funding opportunities for Welsh Government infrastructure projects. As a consequence, the decision was taken to further reconsider solutions to resolve capacity issues on the M4.

In order to inform the strategy for the M4 Corridor around Newport, a further WelTAG Stage 1 Appraisal² was undertaken in 2013 of options that included the M4 CEM short-listed measures, the provision of new motorway capacity routed to the south of Newport, public transport and complementary measures.

1.2 Base Year Traffic Assignment Model

A traffic model of the area is needed to enable traffic flow forecasts to be developed, which can be used to support the planning process for the M4 corridor proposals. Before traffic forecasts can be developed, a base year traffic model is required that accurately reflects traffic flows and conditions on the existing highway network. This will then provide a sound basis for any future scenario testing.

A base year traffic model for the M4 study area was developed and validated for a 2005 base year, and the validation of this model was the subject of a Local Model

¹ Welsh Transport Planning and Appraisal Guidance, available at <u>http://wales.gov.uk/topics/transport/publications/weltag/?lang=en</u>

² Welsh Government, M4 Corridor around Newport, WelTAG Appraisal Report Stage 1 (Strategy Level), Arup, June 2013, available at www.m4newport.com

Validation Report³. This model has formed the basis for all subsequent traffic forecasts and analyses produced for the project to date.

The Design Manual for Roads and Bridges⁴ states that in assessing the validity of a traffic model and the adequacy of its output as an intended base for forecasting, where the trip information relies largely upon observations made more than about 6 years ago it will be necessary to ensure that this information is still valid by undertaking a 'present year validation'. In order to meet this requirement and ensure that the traffic model would continue to provide a valid source of traffic forecasts to support the development of proposals for the M4 corridor around Newport, the base year traffic model has been updated and revalidated to 2012 traffic count information.

1.3 Report Structure

This report summarises the development of the updated base year traffic model and its subsequent validation.

Following this introduction, the report structure is as follows:

- Chapter 2 provides an overview of the study area and the modelling approach;
- Chapter 3 describes the data used in the model development;
- Chapter 4 provides an overview of the development of the model network;
- Chapter 5 outlines the development of the model demand matrices;
- Chapter 6 discusses the model assignment methodology;
- Chapter 7 summarises the calibration of the updated model;
- Chapter 8 presents the results of the model validation process by comparing observed and modelled flows;
- Chapter 9 outlines the realism testing required for variable demand modelling; and
- Chapter 10 contains concluding comments.

³ New M4 Project Magor to Castleton – Local Model Validation Report, Ove Arup and Partners, May 2008

⁴ Design Manual for Roads and Bridges, Volume 12, Section 1, Part 1, Traffic Appraisal Manual, Department for Transport, November 1997

2 Overview of Traffic Model

2.1 Traffic Model Requirements

The key requirement of the M4 Corridor Traffic Model is that it should be capable of representing the existing traffic patterns on the strategic road network within the study area. This would then provide a sound basis for future year forecasts which need to be sensitive to route choice between any new routes tested, the existing M4 and other roads on the surrounding road network.

The traffic model will play an important role in scheme assessment by providing forecasts of traffic flows and conditions for environmental appraisal, highway and junction design and economic assessments.

2.2 Model Software

The M4 Corridor Traffic Model uses the SATURN software (Simulation and Assignment of Traffic to Urban Road Networks), which is a 'congested assignment' software suite that has been developed over a period of more than 30 years by the Institute for Transport Studies at the University of Leeds. It is widely used, both in this country and overseas, for the evaluation of all kinds of highway systems and proposals, and is recognised as an "industry standard" traffic assignment model that satisfies the requirements for modelling highway networks as set out in Volume 12 of the Design Manual for Roads and Bridges (DMRB)⁵, and in WebTAG unit M3.1⁶.

The suite provides a combined traffic simulation and assignment model for the analysis of road proposals ranging from traffic management schemes over relatively localised networks to major infrastructure improvements. One of the key features of SATURN is its ability to simulate the operation of junctions in some detail, including the prediction of queues and delays, the effect of queues blocking back on adjacent junctions, and the influence of congestion at specific points in the network on route choice.

The basic inputs to the SATURN model are the 'demand', in the form of the matrix of trip movements between zones, and the 'supply' in the form of the data file representing the road network. The basic modelling process is illustrated in Figure 2.1. Following the network building procedure, the trip matrix is assigned to the network using an iterative series of loops between 'assignment' and 'simulation' until the model has converged.

⁵ Design Manual for Roads and Bridges, Volume 12 Section 2 Part 1, Traffic Appraisal in Urban Areas, Department for Transport, May 1996

⁶ Transport Analysis Guidance Unit M3.1, Highway Assignment Modelling, Department for Transport, January 2014

Figure 2.1 The SATURN Modelling Process

The 'assignment' process calculates the minimum cost routes for trips in terms of a weighted combination of time and distance. The 'simulation' stage then simulates the operation of each junction in the network. It should be noted that as route costs can depend upon the routes taken by other vehicles, the junction simulations can lead to a different set of minimum cost routes. Thus, the process is repeated, until successive assignment-simulation loops produce an acceptably low level of change in vehicle flows, when the model is deemed to have achieved convergence.

Following the convergence of the model, a matrix estimation procedure is entered, in which those parts of the 'prior' trip matrix that are not directly observed at roadside interview surveys are adjusted in order to provide the best fit assignment to a set of traffic count data. Calibration checks are then carried out, both on the assignment results and the network description, to ensure that the model is performing correctly.

The final stage is to validate the model, in which comparisons are made between assigned flows and a separate set of traffic count data, and modelled journey times are compared with observed times. Normally, the calibration and validation processes need to be run through several loops before satisfactory validation can be achieved.

2.3 Study Area

SATURN networks can comprise either a 'simulation' network, in which the operation of junctions is simulated, or a less detailed 'buffer' network, which essentially functions as a more conventional link-based model. Frequently, SATURN networks are set up as a combination of the two, with the less-detailed 'buffer' area on the periphery ensuring that traffic from more remote areas enters the simulation part of the network at the correct locations.

For the purposes of preparing traffic forecasts for the M4 Corridor model, a core simulation area covers the M4 between J30 in the west and J21 in the east, including junctions 29 and 23a that form the western and eastern ends respectively of the proposed new section of motorway. Within this core area are key roads and corridors of interest including:

- the existing M4 and proposed alternative routes;
- the M48 motorway;
- access routes to the existing M4 and M48 motorways from Cardiff, Newport, Chepstow and the hinterland north of Newport;
- the corridors on the east and west banks of the River Usk that could connect Central Newport to the New M4 via intermediate junctions; and
- east / west routes through Newport via Newport Bridge, George Street Bridge and the Southern Distributor Road (SDR).

Within this core area, all significant junctions were fully simulated, while links were coded to give a representation of their speed and capacity. This level of detail reflects the significance of the key links and junctions in route choice decisions through the study network. Outside the core area is a large area-of-influence where changes in traffic flow may be experienced following opening of a new scheme. This extends to Skewen (M4 J43) in the west, the A465 Heads of the Valleys Road and M50 in the north, and the M5 J8 to 18a in the east. Major roads within this area-of-influence are modelled as a 'buffer' network with a lower level of detail.

The traffic model includes all trips that travel within the core (simulation) area, perhaps with the exception of very short trips within areas such as Newport, Magor and Chepstow. The area of influence (buffer network) only includes trips that would travel through the core area or trips that would potentially divert to travel through the study area.

Figure 2.2 shows the study area, comprising both the core area and the larger area of influence for the M4 Corridor.

2.4 Requirement for Variable Demand Modelling

Transport schemes that have an impact on journey times and cost will, in principle, influence the level of demand for travel. The opening of a new scheme can elicit a number of responses by travellers including trip reassignment, re-timing, re-distribution and modal shift. These responses can result in additional trips and additional vehicle kilometreage on the road network, known as "induced traffic".

Conversely, in a 'Do-Minimum' scenario where there is likely to be limited investment in new sections of highway capacity, the effects of forecast traffic growth and the subsequent increase in traffic congestion can lead to "trip suppression" which could manifest itself as peak spreading, modal switching to public transport, and/or reduction in the number, length or frequency of journeys. These responses, as well as re-distribution, can lead to reduced vehicle kilometreage on the road network.

WebTAG⁷ states that "The purpose of variable demand modelling is to predict and quantify these changes", and goes on to say that "there should be a presumption that the effects of variable demand on scheme benefits will be estimated quantitatively unless there is a compelling reason for not doing so".

WebTAG defines the following criteria required to justify not using variable demand modelling:

- The scheme is quite modest either spatially or financially and is also quite modest in terms of its effect on travel costs. Schemes with a capital cost of less than £5 million can generally be considered as modest;
- There is no congestion or crowding on the network in the forecast year (10 to 15 years after opening), in the absence of the scheme;
- The scheme will have no appreciable effect on travel choices (e.g. mode choice or distribution) in the corridor(s) containing the scheme.

⁷ Transport Analysis Guidance Unit M2, Variable Demand Modelling, Department for Transport, January 2014

A4

Figure 2.2 M4 Traffic Model Study Area

While the M4 scheme may be considered to have limited impact on mode choice in the corridor, it is likely to affect trip distribution. The scheme is therefore considered to meet none of the criteria identified, so that variable demand modelling is required for the proper assessment of the scheme benefits.

2.5 Land Use Modelling, Public Transport and Slow Modes

In order to incorporate a mode choice response, it would be necessary to develop either a multi-modal model or a separate public transport model with a mode choice function that can interact with the SATURN highway model.

As the demand for public transport movements on the M4 corridor is likely to be very limited whether or not the proposed scheme is implemented, it was considered that the modal transfer response will not be important, and that the development of a multi-modal model or a separate public transport model would therefore be disproportionate to the scheme being appraised.

2.6 Model Time Periods

For the M4 traffic model, three time periods are modelled covering the AM and PM peaks and the Interpeak period. Figure 2.3 shows an analysis of traffic volumes on the Malpas Straight (Junction 26 to Junction 27) for the average weekday in May 2012, which indicates clearly defined peak hours in the morning and evening.

Figure 2.3 Average Hourly Weekday Traffic Volumes, Junction 26-27, May 2012

Based on these flow characteristics, the M4 model incorporates three separate time periods:

- AM Peak (08:00 to 09:00);
- Interpeak (13:00 to 14:00); and
- PM Peak (17:00 to 18:00).

2.7 Model User Classes

Different types of journeys are likely to display different characteristics in terms of trip distribution, mode sensitivity, travel time sensitivity and growth patterns. For this reason, as with the 2005 model, the base year model trip matrices were split into five different 'user classes', and built in terms of Passenger Car Units (PCUs). Table 2.1 lists the modelled user classes and their associated PCU factor.

User Class	Vehicle Type / Purpose	PCU Factor
1	Cars – Employer's Business	1.0
2	Cars – Other Purposes	1.0
3	Cars – Journey to Work	1.0
4	Light Goods Vehicles (LGVs)	1.0
5	Heavy Goods Vehicles (HGVs)	2.5

Table 2.1: Modelled User Classes

3 Data Sources

3.1 Overview

A key component in the data sources underlying the 2005 base model was a comprehensive set of 30 roadside interview surveys on all major approaches to the M4 motorway across the core model area, which were used to develop the base year trip matrices. These surveys are described in the previous Local Model Validation Report⁸.

For the purpose of the model update, the re-basing and re-calibration of the model required the projection of the 2005 base matrices to the current year, with the model outputs compared with current traffic count data. Consequently, a programme of new traffic surveys was undertaken to provide the data for this comparison, as outlined in the following sections.

3.2 Welsh Government Data

The Welsh Government continually monitors traffic flows across the trunk road network using a series of permanent Automatic Traffic Count (ATC) detectors. The ATC sites are located on all sections of the M4 and M48 and at frequent intervals on other trunk roads. ATC vehicle flows are presented by hour, by day, by month or in terms of Annual Average Daily Traffic (AADT) or Annual Average Weekday Traffic (AAWT) in each direction. This enables the profiles of traffic patterns to be analysed both over short and long term periods. Such information is also useful to factor traffic flows from one time period to another.

Traffic volume data has been provided by the Welsh Government for all trunk roads within the core study area apart from the M4 motorway itself. The ATC sites on the M4 motorway were largely destroyed during the major roadworks undertaken on the M4 within the study area during the period 2008-2011. Many of these sites remain out of commission or report limited data.

However, Traffic Wales operates the MIDAS (Motorway Incident Detection Automatic Signalling) system on behalf of the Welsh Government, which also monitors traffic volumes on each section of the M4. Comprehensive traffic volume and speed data for the M4 motorway has therefore been obtained from MIDAS.

As the ATC / MIDAS data provides the most reliable source of data for the average weekday, this information has been used for validating the model on the different sections of the M4.

3.3 Classified Junction Turning Counts

Manual Classified Counts (MCCs) were undertaken over a 12-hour period (07:00-19:00), broken down into 15-minute intervals, at key junctions in the core study area. The junction locations are shown in Figures 3.1 and 3.2, and are listed in Table 3.1.

⁸ New M4 Project Magor to Castleton – Local Model Validation Report, Ove Arup and Partners, May 2008

Ref	Location	Date
1	A48 Eastern Avenue / A4232 Southern Way, Cardiff	Tuesday 1 May
2	A48 Eastern Avenue / Pentwyn Road, Cardiff	Tuesday 1 May
3	A48 Eastern Avenue / A4232 Pentwyn Link Rd. Cardiff	Tuesday 1 May
4	M4 Junction 30 / A4232 roundabout. Cardiff Gate	Wednesday 2 May
5	A48 / Cypress Drive, St Mellons	Wednesday 2 May
6	A48 / Marshfield Rd, Castleton	Wednesday 28 March
7	A48 / Blacksmiths Way, Cleppa Park	Wednesday 28 March
8	A48 / Pencarn Way, Cleppa Park	Wednesday 28 March
9	A467 / B4591 Chartist Drive. Rogerstone	Wednesday 28 March
10	B4591 Chartist Dr / Cefn Rd, Rogerstone	Thursday 29 March
11	Bassaleg Rd / Park View, Rogerstone	Thursday 29 March
12	M4 Junction 27 / B4591 roundabout, High Cross	Tuesday 24 April
13	B4591 Risca Rd / Fields Park Rd, Newport	Thursday 29 March
14	B4591 Risca Rd / Bassaleg Rd Newport	Thursday 29 March
15	B4591 Stow Hill / Caerau Rd Newport	Thursday 29 March
16	Stow Hill / Friars Rd Newport	Wednesday 16 May
17	B4237 Cardiff Rd / Gaer Rd Newport	Wednesday 16 May
18	B4239 Lighthouse Rd / Duffryn Drive Newport	Thursday 29 March
19	A48 Southern Distributor Road / Docks Way Newport	Tuesday 24 April
20	A48 Southern Distributor Road / Alexandra Rd, Newport	Thursday 29 March
21	A48 Southern Distributor Road / A4042 Usk Way Newport	Thursday 29 March
21	A4042 Usk Way / Lower Dock St. Newport	Thursday 29 March
22	B4237 George St / Lower Dock St, Newport	Wednesday 13 June
23	B4237 George St / Commercial Rd Newport	Tuesday 3 April
25	B4237 Cardiff Rd / Mendalgief Rd Newport	Tuesday 3 April
25	A 4042 Usk Way / Emlyn St Newport	Tuesday 3 April
20	A4042 Kingsway / B4591 Oueensway Newport	Tuesday 24 April
27	R4591 Oueensway / Bridge St Newport	Tuesday 3 April
20	B4591 Clutha Park Rd / Caerau Rd Newport	Tuesday 3 April
30	A4042 Malnas Relief Rd / Llantarnam Bynass / A4051	Tuesday 3 April
31	Queens Hill / Barrack Hill Newnort	Tuesday 3 April
31	A 4042 Heidenheim Drive / Sainsbury's Newport	Wednesday 2 May
32	A4042 / Brynglas Tunnel Relief Rd	Tuesday 3 April
33	$\Lambda 4051 / Betty S I and Malnas$	Tuesday 3 April
34	M4 Junction 25 / B4506 Coarleon Dd roundshout Newport	Monday 23 April
35	R4596 Caerleon Rd / Ducknool Rd Newport	Tuesday 2 April
30	B4237 Chenstow Pd / Wharf Pd Newport	Tuesday 3 April
37	B4237 Chepstow Rd / What Rd, Newport	Tuesday 3 April
30	B4237 Chenstow Pd / Somerton Pd Newport	Wednesday 4 April
40	B4237 Chepstow Rd / Aberthaw Rd, Newport	Wednesday 4 April
40	A48 Southern Distributor Road / Balfe Pd Newport	Wednesday 4 April
41	A48 Southern Distributor Road / Dane Ru, Newport	Wednesday 4 April
42	R48 Southern Distributor Road / Kingland Crescent, Newport	Wednesday 4 April
43	A48 Southern Distributor Road / Poetty Pd. Newport	Wednesday 4 April
44	A40 Southern Distributor Koad / Dealty Ku, Newport	Wednesday 4 April
43	A40 Chepstow Rd / Hillon Hotel Foundaboul, Langstone	Wednesday 4 April
40	A40 Unepsiow Ku / D4243 Magor Ku, Langstone	Wednesday 4 April
4/	D4245 Caldicol Ku / Station Ku, Koglet	Wednesday 4 April
48	D4243 / INEWPOFT KU, Caldicol	Wednesday 4 April
49	A40 / D4243 Parkwall roundabout	Wednesday 4 April
50	A48 Newport Ka / A466 wye Valley Link Ka, Chepstow	Monday 23 April
51	IVI48 JUNCTION 2 / A406 roundabout, Newhouse	Monday 23 April
52	A4042 / A4051 Harlequin roundabout, Newport	weanesday 13 June

Table 3.1: Classified Turning Counts, 2012

Figure 3.2 Classified Turning Counts - East Area

In addition to these junction counts, use was made of some existing junction turning count data, collected in 2010 as part of the analysis of the M4 Corridor Enhancement Measures. These sites are also shown in Figures 3.1 and 3.2, and are listed in Table 3.2.

Ref	Location	Date
53	M4 Junction 28 / A48 / A467 roundabout, Tredegar Park	Thursday 8 July 2010
54	A48 Southern Distributor Rd / B4237 Pont Ebbw rbt	Wednesday 20 October 2010
55	M4 Junction 26 / A4051 Malpas Rd roundabout, Malpas	Thursday 8 July 2010
56	M4 Junction 24 / A449 / A48 roundabout, Coldra	Wednesday 7 July 2010
57	A467 Forge Rd / A468 Bassaleg roundabout	Thursday 8 July 2010
58	A48 Southern Distributor Rd / Nash Rd, Newport	Thursday 8 July 2010
59	A48 Southern Distributor Rd / Queensway Meadows	Tuesday 29 June 2010
60	M4 Junction 23a / B4245 roundabout, Magor	Tuesday 6 July 2010
61	B4245 / Steelworks Access Rd link roundabout, Magor	Tuesday 29 June 2010
62	B4245 / Steelworks Access Rd link (west junction), Magor	Tuesday 29 June 2010
63	A4051 Malpas Rd / Cwmbran Drive roundabout	Tuesday 13 July 2010

 Table 3.2: M4 CEM Classified Turning Counts, 2010

Data from the junction turning counts listed in Tables 3.1 and 3.2 formed inputs to the matrix estimation process used for calibrating the M4 traffic model.

3.4 Classified Link Counts

In order to supplement the data obtained from MIDAS, twelve hour MCCs were undertaken on each of the motorway links in the study area, in each direction. The count locations are shown in Figure 3.3 and listed in Table 3.3. This information was used to validate the proportion of heavy vehicles on the motorway links, as this information is not available from ATC / MIDAS data.

Ref	Location	Date
L1	M48 Severn Bridge toll booths	Thursday 3 May
L2	M48, between Junction 2 and M4 Junction 23	Tuesday 15 May
L3	M4 Second Severn Crossing toll booths	Tuesday 15 May
L4	M4, between Junction 23a and Junction 24	Tuesday 15 May
L5	M4, between Junction 24 and Junction 25	Tuesday 15 May
L6	M4, between Junction 25a and Junction 26	Tuesday 15 May
L7	M4, between Junction 26 and Junction 27	Tuesday 15 May
L8	M4, between Junction 27 and Junction 28	Tuesday 15 May
L9	M4, between Junction 28 and Junction 29	Wednesday 16 May
L10	M4, between Junction 29 and Junction 30	Wednesday 16 May
L11	A48(M), between M4 Junction 29 and Junction 29a (A48)	Wednesday 16 May

Table 3.3: Classified Link Counts, 2012

Figure 3.3 Classified Link Counts

3.5 Automatic Traffic Counts

In addition to the ATC and MIDAS data supplied by the Welsh Government, a number of ATC sites were installed on strategic links within the study area, providing classified count data in each direction. The ATC sites are shown in Figure 3.4 and are listed in Table 3.4. This information was used for model validation purposes on the River Usk screenline.

Ref	Location	Dates
Α	A48 Southern Distributor Rd, Usk Bridge	28 March – 19 June
В	B4237 George Street Bridge	27 March – 18 June
С	B4591 Clarence Place Bridge	24 March – 20 May
D	A48 east of Tredegar Park	24 March – 27 April
		5 May – 15 June
Е	A467 north of Pye Corner	24 March – 15 June
F	A48 Southern Distributor Road, south of Beatty Rd	24 March – 15 June
G	Brynglas Tunnel Relief Rd (M4 J25a – A4042)	18 April – 19 June
Н	A4042 Usk Way, south of Harlequin Roundabout	24 March – 15 June

Table 3.4: Automatic Traffic Counts, 2012

Figure 3.4 Automatic Traffic Counts

3.6 Journey Time Surveys

Journey time surveys were commissioned on 11 routes within the model simulation area. Each route was travelled a minimum of six times during the morning peak, inter peak and evening peak time periods on a selection of representative days. The average journey times were calculated for use in the model validation process in order to verify that the model is capable of correctly replicating travel times and speeds. Figure 3.5 illustrates the routes of the journey time surveys.

The journey time survey data was used to validate the model network through a comparison the modelled journey times over the same routes.

3.7 Data Processing

To ensure the development of a robust traffic model, it is important that all survey data is carefully reviewed and checked for consistency or any potential errors. This includes a review of the raw data to identify any entries which were inconsistent with 'neighbouring' survey data. Such inconsistencies are likely to reflect errors in the data recording process or unusual traffic patterns. All of the traffic count data collected was subject to range and logic checks to identify any problems or omissions and, where possible, to rectify them.

Consideration was given to the derivation of a suitable factor to convert the 2010 manual counts listed in Table 3.2 to 2012 levels. Automatic count data on the M4 was not considered suitable for this purpose because of the different characteristics of this road to those covered by the count sites. In addition, the M4 was subject to major roadworks throughout 2010, making any count data here potentially unreliable.

A comparison was made of ATC data on the A4042 Malpas Relief Road between June 2010 and June 2012, which showed that the average weekday traffic volume in 2012 was 0.6% lower than that in 2010. In addition, the Department for Transport's (DfT's) National Trip End Model (TEMPRO) predicts a marginal increase in car trips in the Newport area on an average weekday of 0.9% between 2010 and 2012. Taking both of these factors into account, it was considered appropriate not to apply any adjustment factor to the 2010 counts to bring them to 2012 levels.

Figure 3.5 Journey Time Survey Routes

4 Model Network Development

4.1 **Overview**

The SATURN model network comprises a detailed 'simulation' area that covers the core area and a less detailed 'buffer' network that covers the wider area of influence, both as defined in Section 2.3 of this report. The areas covered by the two types of network data were the same as those used for the validated 2005 base model, which formed the starting point for the 2012 update. The full extent of the model network is shown in Figure 4.1, while the more detailed simulation area is shown in Figure 4.2.

4.2 Network Changes

The 2005 base model was made available to inform the separate development of an updated Newport traffic model as part of the Newport Citywide Transport Strategy, produced by Capita Symonds on behalf of Newport City Council. Following the completion of this work, a copy of the updated Newport model was made available by Capita Symonds to inform the update of the M4 model.

The updated 2010 Newport model introduced a number of changes to the model network to reflect improvements that had been introduced on the ground since 2005. These changes include:

- Improvements at the Coldra roundabout (M4 Junction 24), including the 'hamburger' layout and the signal control system;
- Relocation of Kingsway Car Park and revised bus station layout;
- Improvements to Queensway and railway station car park;
- Introduction of traffic signals at the Harlequin roundabout;
- Addition of bus route information and the modelling of bus lanes on Malpas Road, Cardiff Road, Queensway, Clarence Bridge, together with the revised bus station access / egress arrangements;
- Relocation of Sainsbury's foodstore to Crindau, accessed from a new signalcontrolled junction on the A4042 Heidenheim Drive; and
- New Asda foodstore, accessed from a new signal-controlled junction on Lower Dock Street.

Figure 4.1 Model Network

Figure 4.2 Model Simulation Network

4.3 Network Review

The coding of the base network, as updated from the 2010 Newport model, was comprehensively reviewed to ensure its suitability for representing the current situation. This review covered the following:

- Links were plotted in a computer-based GIS to enable an accurate measurement to be obtained for all link lengths in the model network;
- Junction types and layouts were was cross-checked against imaging from 'Google Streetview', in combination with local knowledge and on-site observations, and amended as necessary to take account of any changes since 2010. These included:
 - Revised access arrangements and bus priority measures at the Kingsway Car Park entrance from Emlyn Street; and
 - Revised junction arrangement at Cardiff Road / Commercial Street.
- Saturation flows for all signalised and roundabout junctions were re-estimated from updated geometric measurements;
- Observations were carried out of the current timings at all signal controlled junctions. This enabled the average green and inter-green times for each approach to these junctions to be calculated. Many junctions were found to have demand-responsive signal controls, producing stages of variable duration or, in some cases, 'on-demand' only. In such cases, an average cycle was coded by double cycling or factoring as appropriate to ensure that the turning capacities modelled represented the real situation.
- The locations of current speed limits were reviewed, with adjustments made to the link speeds and speed-flow curves where necessary.

4.4 Link Speeds

A variable speed limit control system on the M4 between Junction 24 and Junction 28 was implemented in July 2011, which has a significant impact on traffic speeds particularly during periods of high flows. Consequently, new speed-flow curves were calibrated for each motorway section between Junction 23 and Junction 29, using traffic counts and monitored speed data from MIDAS collected during March, April and May 2012. The speed-flow curves from MIDAS data are illustrated in Appendix A, and listed in Table 4.1.

Section	Free flow Speed	Speed at Capacity	Flow at Capacity (PCUs/hr)	Power		
Westbound						
J23a to J24	112	84	6990	2.897		
J24 to J25	100	75	6990	2.423		
J25 to J26	90	72	4200	2.750		
J26 to J27	105	80	6990	2.750		
J27 to J28	106	84	6990	2.298		
J28 to J29	109	92	6990	1.746		
	Eas	tbound				
J29 to J28	115	100	6990	2.737		
J28 to J27	104	72	6990	2.710		
J27 to J26	108	75	6990	3.585		
J26 to J25	98	80	4200	2.721		
J25 to J24	100	75	6990	2.957		
J24 to J23a	115	84	6990	2.170		

The calibration of the speed-flow curves is essentially based on speeds observed below capacity, and uses the relationships given in the SATURN manual to describe the standard 'COBA-10' speed-flow curves developed by the Department for Transport and described in the Design Manual for Roads and Bridges.⁹. Each curve has three relationships:

1. Between zero vehicle flow and the flow at break-point speed:

$$S(V) = S_0 + (S_1 - S_0) * (V / F)$$

2. Between the flow at break-point speed and the flow at capacity:

$$S(V) = S_1 + (S_2 - S_1)(V - F) / (C - F)$$

3. Vehicle flows above capacity:

$$S(V) = S_2 / (1 + S_2 (V - C) / 8dC)$$

where:

V is the vehicle flow

F is the maximum flow at which free-flow conditions hold

C is the flow at capacity

S₀ is the free flow speed

S₁ is the intermediate break-point speed

 S_2 is the speed at capacity

⁹ Design Manual for Roads and Bridges, Volume 13 Economic Assessment of Roads Schemes, Section 1, Part 5, Speeds on Links, Department for Transport, May 2002

The SATURN manual then states that the "best-fit" value of the power 'n' may be determined by the equation:

$$n = (R_1 * R_2 - 1) / (B_1 + B_2 - 1) - 1$$

where:

$$B_{1} = ((F / C) R_{1} \log R_{1}) / (R_{1} - 1)$$

$$B_{2} = ((1 - F / C) R_{1} * R_{2} \log R_{2}) / (R_{2} - 1)$$

$$R_{1} = S_{0} / S_{1}$$

$$R_{2} = S_{1} / S_{2}$$

For other links, in general the presumption is that speeds and delays in the urban area are mainly determined by the simulation of junctions. However, there are some links where this does not apply, particularly in the rural areas and on the motorway sections east of Junction 23a and west of Junction 29. For these links, a set of default relationships derived from the COBA10 speed-flow curves is used based on road types. The default speed-flow curves used are listed in Table 4.2.

Road Type	Free flow Speed	Speed at Capacity	Flow at Capacity (PCUs/hr)	Power
D3 Motorway	109	84	6990	2.944
D2 Motorway	104	78	4660	3.187
D2 All-Purpose (grade separated)	104	78	4400	2.949
D2 All-Purpose	99	77	4400	2.433
D2 All-Purpose (50mph limit)	85	66	4400	3.391
S2 Principal	88	62	1410	1.728
S2 Other	88	45	1410	3.850

Table 4.2: Default Speed-Flow Curves

Roads in the less-detailed buffer network outside the main simulation network are not fully modelled, in that traffic that would not pass through the study area is excluded. As the links in the buffer network do not include the full traffic flows, speed-flow relationships could not be used directly to ascertain the speed on these links. Fixed buffer link speeds were therefore estimated based on recorded speed data or by applying the default speed-flow relationships to existing traffic count data. The buffer network was then coded with these fixed speeds to give representative journey times for trips into/out of the study area.

5 Trip Matrix Development

5.1 Zone System

The zone system was based on the 2005 model, with adjustments in the Newport area to reflect the more detailed changes made for the 2010 Newport traffic model. Further minor modifications and refinements were made to introduce new zones where development has occurred or is proposed, and to disaggregate existing zones to better represent land use or to provide a greater level of detail within the extended simulation network.

Figures 5.1 to 5.3 illustrate the M4 Corridor traffic model zones.

Figure 5.1 UK Zone Plan

Figure 5.2 South East Wales Zone Plan

Figure 5.3 Newport Area Zone Plan

5.2 Matrix Development

As noted in Section 4.2, the Newport traffic model was developed for a 2010 base year from the information contained in the M4 2005 model. As such, the Newport model was considered to provide the best source of trip data for internal movements within the Newport area. As the Newport model was developed for the AM and PM peak hours only, trip information for the interpeak model was based entirely on the M4 2005 model.

For the purpose of merging the validated AM and PM peak trip matrices from the Newport traffic model with those from the 2005 M4 model, they were first factored to 2012 levels, using growth factors for the local areas that were derived from the Department for Transport's National Trip End Model¹⁰.

Once the zone systems had been refined to a common base, the internal movements within the Newport area were extracted from the Newport model, and used to replace the equivalent trip data in the AM and PM peak M4 model matrices. This ensured that the trip information for movements using the M4 motorway, which was based on the 2005 roadside interview survey programme, was retained.

While the Newport model included a representation of some developments that were implemented between 2005 and 2010, it was necessary to take account of those developments put in place since 2010, together with those introduced since 2005 outside the main Newport area. Trip information for these developments was taken from forecasts, using appropriate factors to take account of the ongoing nature of some of these developments. These developments are listed in Table 5.1.

Ref	Development	Location	Trip Data Source
1	Langstone Business Park	Priory Drive, Langstone	Newport model
2	B&Q store	Corporation Road	Newport model
3	George Street offices (partial)	Lower Dock Street	Newport model
4	Lidl foodstore	Granville Road	Forecast
5	Residential development	Morgan Way, Duffryn	Forecast
6	Phoenix Business Park	Former Pirelli site, Telford St	Newport model
7	Residential development	St Joseph's School, Duffryn	Newport model
8	Asda foodstore	Lower Dock Street	Newport model
9	Wales 1 Business Park (partial)	M4 Junction 23a, Magor	Forecast
10	Sainsbury's foodstore	Crindau	Forecast
11	Celtic Springs Business Park (partial)	Cleppa Park	Forecast
12	Residential development	Spytty Pill / Corporation Rd	Newport model
13	Residential development	Old Town Dock, Usk Way	Newport model
14	Parc Lysaght: residential (partial) and Morrisons foodstore	Corporation Rd	Forecast
15	University Campus	City Centre riverfront	Forecast
16	Lysaght village (former Orb works - partial)	Corporation Rd	Forecast

Table 5.1: Developments Implemented since 2005

¹⁰ National Trip End Model, TEMPRO version 6.2, Department for Transport, July 2011

6 Assignment Methodology

6.1 Assignment Algorithm

The assignment process is an important element as it predicts the routes that drivers will choose taking into account the level of traffic demand and the available road capacity. The assignment technique used for the M4 model was the Wardrop equilibrium assignment for multiple user classes. The principle of this assignment is that traffic arranges itself on the network such that the cost of travel on all routes used between each origin and destination is equal to the minimum cost of travel and all unused routes have equal or greater cost.

6.2 Generalised Costs

The generalised cost of travel is based on a combination of factors that drivers take into account when choosing routes, mainly time and distance. Generalised cost parameters are used in a SATURN model to represent travellers' value of time by pence per minute (PPM) and distance by pence per kilometre (PPK). Values of PPK and PPM can be set universally for the entire model or individually by user class. Where a choice of route exists (as in nearly all cases) these values are used to determine which available route has a lower 'cost' to the traveller. Thus if PPK value is high, low cost routes will be those which minimise distance, conversely if PPM is high low cost routes will be those that minimise the travel time.

WebTAG Unit 3.5.6¹¹ Tables 1 and 2 provide monetary values of time, which can be used to derive values of time in an assignment model in terms of pence per minute (PPM). Similarly Tables 10 to 12 provide parameters to calculate fuel costs and Table 15 provides parameters to calculate non-fuel vehicle operating costs. When added together, the fuel and non-fuel elements give the total vehicle operating costs in terms of pence per kilometre (PPK) for different transport users. Unit 3.5.6 states that, in non-work time it is assumed that travellers do not perceive non-fuel vehicle operating costs, and so these have been omitted from the overall calculation of generalised costs for commuting and other trips. The PPM and PPK parameters then give the overall generalised cost for each of the different user classes.

For the purpose of the 2012 model update, the generalised costs derived from the most recent version of WebTAG 3.5.6 have been calculated in 2010 prices. These have been converted to 2012 prices using national statistics on the change in average earnings and the GDP. The generalised cost parameters in 2012 prices used in the updated base model are shown in Table 6.1.

¹¹ Transport Analysis Guidance Unit 3.5.6, Values of Time and Operating Costs, Department for Transport, October 2012
	AM Peak		Inter	Peak	PM Peak					
	PPM	PPK	PPM	PPK	PPM	PPK				
Car, Employer's Business	56.05	13.56	55.37	13.48	58.41	13.58				
Car, Other	14.75	7.82	15.18	7.68	15.62	7.74				
Car, Commuting	12.56	7.70	12.77	7.68	12.80	7.67				
Light Goods Vehicle	24.34	17.68	23.84	17.89	24.71	17.72				
Heavy Goods Vehicle	20.99	44.79	20.71	45.17	20.72	47.38				

Table 6.1: Generalised Cost Parameter Values, 2012 Prices

6.3 Assignment Convergence

Convergence of the model is important in providing consistent and robust model results. In particular, there needs to be confidence that any differences reported by the model between a 'Do-Minimum' and a 'Do-Something' scenario are real, rather than relating to differing degrees of model convergence.

Guidance on the degree of model convergence is given in WebTAG¹². The main measure of the convergence of a traffic assignment is the Delta statistic, or %GAP. This is the difference between the costs along the chosen routes and those along the minimum cost routes, expressed as a percentage of the minimum costs. WebTAG recommends a guideline target for the %GAP value of 0.1% or less.

In addition, WebTAG recommends that the proportion of links in which the changes in traffic volumes is less than 1% should be at least 98% for four consecutive iterations.

Table 6.2 shows the level of convergence achieved by the updated M4 Corridor model for each time period. The results indicate that the model achieves a good level of convergence that complies with the criteria set out in WebTAG.

	AM Peak	Inter Peak	PM Peak
Number of Iterations	55	10	14
'Delta' Function (%GAP)	0.0020%	0.00001%	0.00028%
Percentage of link with flow change of less than 1% (final four iterations)	98.88% 98.08% 99.40% 99.16%	99.67% 99.82% 99.33% 98.68%	98.91% 98.70% 98.46% 98.41%

Table 6.2: M4 Model Convergence Statistics

¹² Transport Analysis Guidance, Highway Assignment Modelling, Unit 3.19, Department for Transport, August 2012

7 Model Calibration

7.1 Network Checks

Following the initial assignments, a matrix estimation procedure was required to calibrate the updated M4 Corridor model. Before commencing matrix estimation, it was important to ensure that the network was assigning trips in a realistic way to avoid matrix distortion due to network errors. For this reason, detailed checks were undertaken and corrections were made before matrix estimation was started.

The network building print files produced by SATURN contain a great deal of information to facilitate the identification of errors in the network coding, and these were reviewed as part of the checking process. In addition to this, other checks were carried out, including:

- a review of link lengths, speeds and connectivity;
- a review of junction coding, including junction types, capacities and lane allocations;
- the checking of the minimum-cost routes through the network for selected traffic movements;
- select link analyses of the origin-destination pattern of trips using key links, including the Usk river crossings, and motorway links and slip roads, to identify any implausible movements; and
- a review of network attributes to identify locations of poor convergence, long delays and high volume/capacity ratios.

Following this process, the final base year SATURN networks were considered to accurately represent the physical layouts and operation of the highway network in the study area.

7.2 Matrix Estimation

Matrix estimation is a modelling technique that has become a standard feature in many traffic models. Essentially, its purpose is to produce a 'most likely' trip matrix that fits with available traffic count data. It is based on the theoretical procedure properly entitled 'Matrix Estimation from Maximum Entropy', and is generally referred to as ME2.

Essentially, the process uses an iterative procedure to find a set of balancing factors for the origin-destination movements on each counted link to ensure that the assigned flows match the counts within certain user-defined limits. ME2 can be used to create a new trip matrix from scratch, but the best results are obtained when it is used to update an existing trip matrix. Within the SATURN suite, this process is run through the SATME2 program.

In order to properly validate the traffic model, it is important that the traffic counts used for validation are not also used in the process of developing the trip matrices. Validation needs to be completed against independent count data, which therefore cannot be used for matrix estimation purposes. The count data selected for matrix estimation, therefore, have not been used for the validation of the traffic model. Taking this into account, the count sites selected for the matrix estimation

process were distributed across the network based on the need to update the 'prior' trip matrix in particular locations.

Successive applications of matrix estimation always utilised the same defined 'prior' trip matrix as an input, to prevent the process magnifying specific matrix changes on successive runs. For each modelled time period, matrix estimation was applied separately to the different vehicle classes. This was essential for the purposes of the multi-user class assignment being used in the SATURN model, and required separate counts of cars, light goods and heavy vehicles to be used for the matrix estimation process.

WebTAG¹³ suggests a set of benchmark criteria used to review the extent of changes due to matrix estimation. These criteria are outlined in Table 7.1 shown below.

Measure	Benchmark Criteria
Matrix zonal cell values	Slope within 0.98 and 1.02
	Intercept near zero
	R ² in excess of 0.95
Matrix zonal trip ends	Slope within 0.99 and 1.01
	Intercept near zero
	R ² in excess of 0.98
Trip length distributions	Means within 5%
	Standard deviations within 5%
Sector to sector level matrices	Differences within 5%

 Table 7.1: Significance of Matrix Estimation Changes.

The guidance identifies that any exceedances do not mean that the model is unsuitable for the intended uses. The performance of the model should be reviewed against these criteria and exceedances should be examined and assessed for their importance particularly in relation to the area of influence of the scheme to be assessed. In relation to the M4 model, this was considered to cover the full M4 corridor covered in simulation within the model. The analysis excluded all intrazonal movements from the matrices (which were not affected through matrix estimation).

Table 7.2 provides a summary of the cell and trip end changes due to matrix estimation in line with the benchmarks provided within WebTAG. In general terms this indicates that some exceedances occur for each time period.

	AM Peak			Interpeak			PM Peak		
	Cell Values	Rows	Cols	Cell Values	Rows	Cols	Cell Values	Rows	Cols
Slope	0.80	0.84	0.87	0.76	0.82	0.83	0.84	0.92	0.86
Intercept	0.01	1.86	5.31	0.01	1.74	13.40	0.01	-0.18	7.39
R ²	0.65	0.84	0.92	0.61	0.83	0.86	0.65	0.88	0.90

Table 7.2: Matrix Estimation Changes to Zonal Cell Values and Trip Ends

¹³ Transport Analysis Guidance Unit 3.19, Highway Assignment Modelling, Department for Transport, August 2012

Checks were therefore undertaken to ensure that the ME2 process had not distorted the trip matrix unrealistically. Table 7.3 shows that most cells within the matrices did not change at all, while the number of matrix cells changing by fewer than three trips was less than 0.03% of the total number of cells. The GEH error statistic, which is described in more detail in Section 7.3, compares both absolute and relative values, and this indicated that the great majority of cells achieved a value of less than 2.0.

	Change in M	atrix Cell Value	GEH Error Statistic		
	No Change	Fewer than 3 trips	Zero	Less than 2.0	
AM Peak	83.65%	99.78%	83.45%	99.85%	
Inter Peak	91.70%	99.84%	91.64%	99.86%	
PM Peak	83.59%	99.77%	83.35%	99.84%	

Table 7.3: Matrix Estimation – Changes to Cell Values

The changes in trip length distribution that result from matrix estimation are shown in Table 7.4. In most cases, the results show that the changes in trip lengths fall within the benchmarks suggested by WebTAG, with only the average trip length in the interpeak being slightly greater.

		Mean		Standard Deviation				
	Pre-ME2	Post-ME2	% Diff	Pre-ME2	Post-ME2	% Diff		
AM Peak	43.32	43.63	0.72%	70.40	72.41	2.86%		
Inter Peak	48.95	45.90	-6.24%	79.40	78.70	-0.89%		
PM Peak	39.28	38.34	-2.39%	68.89	68.68	-0.30%		

Table 7.4: Changes in Trip Length (km) due to Matrix Estimation

A check was made on the average length of trips using the M4, and the results are shown in Table 7.5. While the size of the changes varied by section, they were all less than the suggested benchmark of 5%, including those in the interpeak period. It was therefore concluded that the changes brought about by the matrix estimation process did not impact significantly on the area of the model of greatest interest, that of the M4 motorway.

Location	AM		IP			PM			
	Avge Tri (k	p Length m)	% change	Avge Trip Length (km)		% change	Avge Tri (k	ip Length m)	% change
	Pre-ME2	Post ME2		Pre-ME2	Post ME2		Pre-ME2	Post ME2	
M4, J28–J29	88.19	86.44	-2.0%	106.23	110.53	+4.0%	89.00	88.77	-0.3%
M4, Brynglas Tunnels	123.86	119.72	-3.3%	144.42	145.72	+0.9%	123.19	126.54	+2.7%
M4, J23a–J24	103.21	104.04	+0.8%	119.02	120.16	+1.0%	110.38	109.41	-0.9%

 Table 7.5: Changes in Trip Length on the M4 Motorway

7.3 Traffic Flow Calibration

A standard method for checking model calibration and validation is to compare observed values against modelled. Acceptability guidelines on "goodness of fit" are given in WebTAG. These are presented in terms of percentage or absolute difference in modelled flows and GEH. GEH is a form of chi square test that incorporates both relative and absolute errors. The GEH formula is outlined below:

$$GEH = \sqrt{\frac{(M-C)^2}{(M+C)/2}}$$

where: GEH is the GEH statistic

M is the modelled flow; and

C is the observed flow.

Advice on acceptable criteria for traffic model calibration and validation is given in WebTAG¹⁴. The criteria for link flows are based on relative and absolute differences and the GEH statistic, and are summarised in Table 7.6.

Table 7.6: Flow Comparison Guidelines

Criteria and Measures	Acceptability Guideline
Assigned Hourly Flows Compared with Observed Flows	
Individual flows within 15% for flows 700 – 2700 vph	> 85% of cases
Individual flows within 100 vph for flows <700 vph	> 85% of cases
Individual flows within 400 vph for flows >2700 vph	> 85% of cases
Total screenline/cordon flows (>5 links) to be within 5%	All (or nearly all) screenlines
GEH Statistic	
Individual flows: GEH < 5.0	> 85% of cases

The screenlines used for model calibration are shown in Figure 7.1, and Tables 7.7 to 7.9 show a comparison of the observed traffic flows with the modelled flows following matrix estimation for the morning peak, interpeak and evening peak hours respectively.

The results show that in most cases, the link flows and screenline totals meet the WebTAG criteria. This indicates that the model provides an accurate representation of traffic flows on the model network.

¹⁴ Transport Analysis Guidance, Highway Assignment Modelling, Unit 3.19, Department for Transport, August 2012

Figure 7.1 Calibration / Validation Screenlines

Lastbound / Southboun		wport			
	Modelled	Observed	GEH	Flow	GEH
	Flow	Flow		Criteria	Criteria
East Screenline					
M4, J24-J23a, eastbound	4010	3894	1.85	PASS	PASS
A48 east of J24, eastbound	685	740	2.06	PASS	PASS
East Screenline Total	4695	4634	0.90	PASS	PASS
West Screenline					
M4. J29-J28, eastbound	5604	5741	1.83	PASS	PASS
A48 Castleton, eastbound	1141	1289	4.23	PASS	PASS
West Screenline Total	6745	7030	3.43	PASS	PASS
Severn Screenline	1001	1000	1 50	5.00	
M48 Severn Bridge, eastbound	1236	1292	1.59	PASS	PASS
M4 Second Severn Crossing, eastbound	3286	3411	2.15	PASS	PASS
Severn Screenline Total	4522	4703	2.66	PASS	PASS
North of Motorway Screenline					
A467 north of J28, southbound	1325	1245	2.22	PASS	PASS
B4591 north of J27, southbound	1135	1159	0.71	PASS	PASS
A4051 north of J26, southbound	2228	2084	3.10	PASS	PASS
A4042 Malpas Relief Road, southbound	2337	2329	0.16	PASS	PASS
B4596 north of J25, southbound	685	768	3.11	PASS	PASS
A449 north of J24, southbound	1702	1714	0.29	PASS	PASS
A48 east of J24, westbound	1016	1033	0.54	PASS	PASS
North of Motorway Screenline Total	10428	10332	0.92	PASS	PASS
South of Motorway Screenline			1 50	5.00	
A48 SDR east of J28, eastbound	1727	1665	1.50	PASS	PASS
B4591 Risca Rd, eastbound	736	883	5.16	FAIL	FAIL
A4051 south of J26, southbound	934	918	0.53	PASS	PASS
A4042 south of J25a, southbound	2440	2492	1.05	PASS	PASS
B4596 south of J25, southbound	555	577	0.94	PASS	PASS
B4237 west of J24, westbound	739	791	1.89	PASS	PASS
A48 SDR south of J24, southbound	1160	1144	0.47	PASS	PASS
South of Motorway Screenline Total	8291	8470	0.33	PASS	PASS
<u>Motorway Links</u>					
M4, J32-J30, eastbound	4476	4657	2.68	PASS	PASS
M4, J30-J29, eastbound	3315	3443	2.20	PASS	PASS
A48(M), J29a–J29, eastbound	2289	2232	1.20	PASS	PASS
M4, J23a-J23, eastbound	3938	3606	5.40	PASS	FAIL
M48, east of M4, eastbound	652	596	2.24	PASS	PASS

Table 7.7a: Link Calibration Results (PCUs), AM Peak Eastbound / Southbound / In to Newport

	Modelled	Observed	GEH	Flow	GEH
	Flow	Flow		Criteria	Criteria
Motorway Sliproads					
M4 J30 eastbound offslip	1439	1532	2.41	PASS	PASS
M4 J30 eastbound onslip	277	317	2.31	PASS	PASS
M4 J28 eastbound offslip	1364	1411	1.28	PASS	PASS
M4 J28 eastbound onslip	803	791	0.41	PASS	PASS
M4 J27 eastbound offslip	553	580	1.17	PASS	PASS
M4 J27 eastbound onslip	673	645	1.09	PASS	PASS
M4 J26 eastbound offslip	1752	1653	2.41	PASS	PASS
M4 J26 eastbound onslip	224	161	4.51	PASS	PASS
M4 J25a eastbound onslip	981	1044	1.98	PASS	PASS
M4 J25 eastbound onslip	178	172	0.44	PASS	PASS
M4 J24 eastbound offslip	1509	1559	1.31	PASS	PASS
M4 J24 eastbound onslip	726	804	2.84	PASS	PASS
M4 J23a eastbound offslip	652	716	2.45	PASS	PASS
M4 J23a eastbound onslip	580	571	0.38	PASS	PASS
Miscellaneous Sites					
A4232 south of J30, southbound	1528	1562	0.85	PASS	PASS
A48 west of A4232, eastbound	3896	3660	3.83	PASS	PASS
A48, A4232 to A48(M) J29a, eastbound	4061	3964	1.53	PASS	PASS
B4245 east of Magor rbt, eastbound	438	459	0.96	PASS	PASS
A48 west of Parkwall rbt, eastbound	183	207	1.72	PASS	PASS
A48 east of Parkwall rbt, eastbound	603	602	0.05	PASS	PASS
B4245 south of Parkwall rbt, southbound	487	431	2.61	PASS	PASS
TOTAL ACCEPTABIL	ITY CRITE	RIA		98%	86%

		-	~ ~ ~ ~ ~		~~~~
	Modelled Flow	Observed Flow	GEH	Flow Criteria	GEH Criteria
Fast Screenline				Criteria	
M4 I24-I23a westhound	3634	3594	0.65	PASS	PASS
A48 east of I24 westbound	1016	1033	0.54	PASS	PASS
East Series Total	4(50	1035	0.22	DASS	DASS
Eusi Screentine Total	4050	4027	0.52	PASS	rass
Wast Samoonling					
M4 129-128 westbound	5264	5733	0.43	PASS	PASS
$\Lambda 48$ Castleton westbound	738	720	0.45	PASS	PASS
A46 Castelon, westoound	(000	720	0.09	TASS DAGG	TASS DAGG
West Screenline Total	6002	5955	0.64	PASS	PASS
Second Second Prov					
<u>Severn Screenline</u>	(55	ECA	2 70	DACC	DACC
M48 Severn Bridge, westbound	000	504 2211	5.70 0.21	PASS	PASS
M4 Second Severn Crossing, westbound	2201	2211	0.21	PASS	PASS
Severn Screenline Total	2856	2775	1.53	PASS	PASS
North of Motorway Screenline	1000	1000		5.00	
A467 north of J28, northbound	1092	1202	3.24	PASS	PASS
B4591 north of J27, northbound	684	714	1.14	PASS	PASS
A4051 north of J26, northbound	1961	1897	1.45	PASS	PASS
A4042 Malpas Relief Road, northbound	1617	1655	0.93	PASS	PASS
B4596 north of J25, northbound	379	498	5.86	FAIL	FAIL
A449 north of J24, northbound	1049	1075	0.79	PASS	PASS
A48 east of J24, eastbound	685	740	2.06	PASS	PASS
North of Motorway Screenline Total	7467	7781	3.58	PASS	PASS
South of Motorway Screenline	1000			2.00	
A48 SDR east of J28, westbound	1099	994	3.23	PASS	PASS
B4591 Risca Rd, westbound	866	1238	11.47	FAIL	FAIL
A4051 south of J26, northbound	1156	989	5.12	FAIL	FAIL
A4042 south of J25a, northbound	1276	1285	0.24	PASS	PASS
B4596 south of J25, northbound	773	749	0.86	PASS	PASS
B4237 west of J24, eastbound	445	482	1.75	PASS	PASS
A48 SDR south of J24, northbound	627	681	2.12	PASS	PASS
South of Motorway Screenline Total	6242	6418	2.22	PASS	PASS
<u>Motorway Links</u>					
M4, J32-J30, westbound	3544	3316	3.88	PASS	PASS
M4, J30-J29, westbound	3205	3134	1.26	PASS	PASS
A48(M), J29a – J29, westbound	2059	2103	0.97	PASS	PASS
M4, J23a-J23, westbound	2945	2915	0.56	PASS	PASS
M48, east of M4, westbound	745	728	0.62	PASS	PASS

Table 7.7b: Link Calibration Results (PCUs), AM Peak Westbound / Northbound / Out from Newport

317	318		Criteria	Criteria		
317 1006	318					
1006		0.02	PASS	PASS		
	1008	0.02	PASS	PASS		
791	789	0.07	PASS	PASS		
1781	1770	0.00	PASS	PASS		
126	145	1.65	PASS	PASS		
954	1018	2.02	PASS	PASS		
102	112	0.96	PASS	PASS		
2120	2048	1.50	PASS	PASS		
2120 414	2048 409	0.26	PASS	PASS		
875	999	4.05	PASS	PASS		
1750	1847	2 29	PASS	PASS		
991	878	3.70	PASS	PASS		
691	662	1.12	PASS	PASS		
1030	847	5.98	FAIL	FAIL		
1000	017	0.20				
1691	1470	5.54	PASS	FAIL		
3676	3721	0.74	PASS	PASS		
3316	3154	2.84	PASS	PASS		
1042	1153	3 35	PASS	PASS		
256	218	2.51	PASS	PASS		
723	479	9.96	FAIL	FAIL		
532	301	11.32	FAIL	FAIL		
TV CRITER						
	1781 126 954 102 2120 414 875 1750 991 691 1030 1691 3676 3316 1042 256 723 532 TV CRITER	1781 1770 126 145 954 1018 102 112 2120 2048 414 409 875 999 1750 1847 991 878 691 662 1030 847 1691 1470 3676 3721 3316 3154 1042 1153 256 218 723 479 532 301	1781 1770 0.28 126 145 1.65 954 1018 2.02 102 112 0.96 2120 2048 1.59 414 409 0.26 875 999 4.05 1750 1847 2.29 991 878 3.70 691 662 1.12 1030 847 5.98 1691 1470 5.54 3676 3721 0.74 3316 3154 2.84 1042 1153 3.35 256 218 2.51 723 479 9.96 532 301 11.32	1781 1770 0.28 PASS 126 145 1.65 PASS 954 1018 2.02 PASS 102 112 0.96 PASS 2120 2048 1.59 PASS 414 409 0.26 PASS 875 999 4.05 PASS 970 1847 2.29 PASS 991 878 3.70 PASS 691 662 1.12 PASS 1030 847 5.98 FAIL 1691 1470 5.54 PASS 3316 3154 2.84 PASS 1042 1153 3.35 PASS 256 218 2.51 PASS 723 479 9.96 FAIL 532 301 11.32 FAIL		

	Modelled Flow	Observed Flow	GEH	Flow Criteria	GEH Critoria
Fast Sayaanlina				Cinteria	Criteria
M4 124-123a easthound	3105	2940	2 99	PASS	PASS
A48 east of I24 easthound	593	665	2.99	PASS	PASS
Fast Screenling Total	3608	3605	1.52	PASS	PASS
	5070	5005	1.32	TASS	1 A55
West Screenline					
M4, J29-J28, eastbound	3713	4003	4.68	PASS	PASS
A48 Castleton, eastbound	381	431	2.47	PASS	PASS
West Screenline Total	4094	4434	5.21	FAIL	FAIL
Severn Screenline					
M48 Severn Bridge, eastbound	583	601	0.75	PASS	PASS
M4 Second Severn Crossing, eastbound	2574	2527	0.93	PASS	PASS
Severn Screenline Total	3157	3128	0.51	PASS	PASS
North of Motorway Screenline					
A467 north of J28, southbound	1212	1239	0.77	PASS	PASS
B4591 north of J27, southbound	528	550	0.94	PASS	PASS
A4051 north of J26, southbound	1338	1374	0.98	PASS	PASS
A4042 Malpas Relief Road, southbound	1219	1217	0.05	PASS	PASS
B4596 north of J25, southbound	447	489	1.96	PASS	PASS
A449 north of J24, southbound	1043	1129	2.63	PASS	PASS
A48 east of J24, westbound	621	683	2.44	PASS	PASS
North of Motorway Screenline Total	6408	6682	3.39	PASS	PASS
South of Motorway Screenline					
A48 SDR east of J28, eastbound	1267	1201	1.87	PASS	PASS
B4591 Risca Rd, eastbound	472	531	2.61	PASS	PASS
A4051 south of J26, southbound	775	764	0.38	PASS	PASS
A4042 south of J25a, southbound	1206	1244	1.08	PASS	PASS
B4596 south of J25, southbound	453	426	1.28	PASS	PASS
B4237 west of J24, westbound	535	516	0.85	PASS	PASS
A48 SDR south of J24, southbound	880	820	2.03	PASS	PASS
South of Motorway Screenline Total	5588	5502	1.15	PASS	PASS
<u>Motorway Links</u>					
M4, J32-J30, eastbound	2597	2472	2.48	PASS	PASS
M4, J30-J29, eastbound	2252	2227	0.53	PASS	PASS
A48(M), J29a – J29, eastbound	1461	1477	0.42	PASS	PASS
M4, J23a-J23, eastbound	2993	2895	1.81	PASS	PASS
M48, east of M4, eastbound	420	371	2.46	PASS	PASS

Table 7.8a:Link Calibration Results (PCUs), Interpeak
Eastbound / Southbound / In to Newport

	Modelled Flow	Observed Flow	GEH	Flow Criteria	GEH Criteria
Motorway Sliproads					
M4 J30 eastbound offslip	549	451	4.38	PASS	PASS
M4 J30 eastbound onslip	204	201	0.22	PASS	PASS
M4 J28 eastbound offslip	768	853	2.99	PASS	PASS
M4 J28 eastbound onslip	638	796	5.92	FAIL	FAIL
M4 J27 eastbound offslip	248	262	0.87	PASS	PASS
M4 J27 eastbound onslip	291	315	1.39	PASS	PASS
M4 J26 eastbound offslip	1026	1085	1.83	PASS	PASS
M4 J26 eastbound onslip	91	101	1.01	PASS	PASS
M4 J25a eastbound onslip	713	635	2.99	PASS	PASS
M4 J25 eastbound onslip	57	84	3.20	PASS	PASS
M4 J24 eastbound offslip	1050	1078	0.85	PASS	PASS
M4 J24 eastbound onslip	695	701	0.22	PASS	PASS
M4 J23a eastbound offslip	611	623	0.50	PASS	PASS
M4 J23a eastbound onslip	500	474	1.15	PASS	PASS
Miscellaneous Sites					
A4232 south of J30, southbound	892	742	5.24	FAIL	FAIL
A48 west of A4232, eastbound	2357	2341	0.33	PASS	PASS
A48, A4232 to A48(M) J29a, eastbound	2272	2267	0.09	PASS	PASS
B4245 east of Magor rbt, eastbound	432	436	0.23	PASS	PASS
A48 west of Parkwall rbt, eastbound	201	227	1.82	PASS	PASS
A48 east of Parkwall rbt, eastbound	462	492	1.36	PASS	PASS
B4245 south of Parkwall rbt, southbound	289	357	0.45	PASS	PASS
TOTAL ACCEPTABIL	96%	96%			

	Modelled	Observed	GEH	Flow	GEH
	Flow	Flow		Criteria	Criteria
East Screenline					
M4, J24-J23a, westbound	3102	2850	4.62	PASS	PASS
A48 east of J24, westbound	621	683	2.44	PASS	PASS
East Screenline Total	3723	3533	3.15	FAIL	PASS
West Screenline					
M4. J29-J28, westbound	3713	3778	1.07	PASS	PASS
A48 Castleton, westbound	387	448	2.98	PASS	PASS
West Screenline Total	4100	4226	1.95	PASS	PASS
<u>Severn Screenline</u>					
M48 Severn Bridge, westbound	517	558	1.76	PASS	PASS
M4 Second Severn Crossing, westbound	2181	2098	1.79	PASS	PASS
Severn Screenline Total	2698	2656	0.81	PASS	PASS
North of Motorway Screenline					
A467 north of J28, northbound	1093	1181	2.61	PASS	PASS
B4591 north of J27, northbound	768	707	2.28	PASS	PASS
A4051 north of J26, northbound	1341	1364	0.62	PASS	PASS
A4042 Malpas Relief Road, northbound	1263	1237	0.73	PASS	PASS
B4596 north of J25, northbound	482	463	0.87	PASS	PASS
A449 north of J24, northbound	957	969	0.39	PASS	PASS
A48 east of J24, eastbound	593	665	2.89	PASS	PASS
North of Motorway Screenline Total	6497	6586	1.10	PASS	PASS
South of Motorway Screenline	1240	1224	0.69	DAGG	DAGG
A48 SDR east of J28, westbound	1248	1224	0.68	PASS	PASS
A 4051 gouth of 126 month owned	518	5/5	2.45	PASS	PASS
A4031 south of J25, northbound	900	831 1120	1.09	PASS	PASS
R4042 south of 125 a northbound R4506 south of 125 northbound	1228	1120	2.00	PASS	PASS
B4330 south of J23, northound B4237 west of J24 easthound	495	449	0.30	PASS	PASS
A 48 SDP south of 124, porthbound	432	400	2.04	DASS	DASS
South of Materian Sources Fire Tatal	5590	5494	1.40	DASS	DASS
South of Molorway Screentine Total	2292	5484	1.40	PASS	PASS
Motomyoy Links					
M4 I32-I30 westhound	2220	2286	1 1 1	PASS	PASS
M4 I30-I29 westbound	2046	1987	1 31	PASS	PASS
A48(M) 129a - 129 westbound	1446	1433	0.34	PASS	PASS
M4_J23a-J23_westbound	2663	2578	1.67	PASS	PASS
M48, east of M4, westbound	482	477	0.23	PASS	PASS

Table 7.8b: Link Calibration Results (PCUs), Interpeak Westbound / Northbound / Out from Newport

	Modelled Flow	Observed Flow	GEH	Flow Criteria	GEH Criteria
Motorway Sliproads				Critteria	Cincila
M4 I30 westbound offslin	298	290	0.48	PASS	PASS
M4 I30 westbound onslip	738	290 757	0.40	PASS	PASS
M4 I28 westbound offslip	709	615	3.65	FAII	PASS
M4 I28 westbound onslip	1055	1110	1.68	PASS	PASS
M4 127 westbound offslip	1035	108	1.00	PASS	PASS
M4 127 westbound onslip	663	641	0.87	PASS	PASS
M4 126 westbound offslip	95	90	0.56	PASS	PASS
M4 126 westbound onslip	1149	1170	0.50	PASS	PASS
M4 125a westbound onslip	421	452	1 49	PASS	PASS
M4 125 westbound onslip	137	254	8 31	FAII	FAII
M4 124 westbound offslip	801	254 761	1 42	PASS	PASS
M4 124 westbound onslip	859	822	1.42	PASS	PASS
M4 123a westbound offslip	264	211	3.41	PASS	PASS
M4 J23a westbound onslip	557	500	2.49	PASS	PASS
			>	11100	11100
Miscellaneous Sites					
A4232 south of J30, northbound	820	772	1.71	PASS	PASS
A48 west of A4232, westbound	2338	2293	0.94	PASS	PASS
A48, A4232 to A48(M) J29a, westbound	2240	2187	1.13	PASS	PASS
B4245 east of Magor rbt, westbound	554	600	1.93	PASS	PASS
A48 west of Parkwall rbt, westbound	238	232	0.41	PASS	PASS
A48 east of Parkwall rbt, westbound	556	552	0.17	PASS	PASS
B4245 south of Parkwall rbt, northbound	348	357	0.50	PASS	PASS
TOTAL ACCEPTABILITY CRITERIA					98%

	Modelled Flow	Observed Flow	GEH	Flow Critoria	GEH Critoria
East Sensonline				Cinteria	Criteria
M4 124-123a eastbound	3533	3450	1.24	PASS	PASS
A48 east of 124 eastbound	1029	1064	1.24	PASS	PASS
Fast Screenline Total	4562	4523	0.57	PASS	PASS
	4302	-1525	0.57	IASS	1 A55
West Screenline					
M4, J29-J28, eastbound	5088	5041	0.66	PASS	PASS
A48 Castleton, eastbound	599	667	2.69	PASS	PASS
West Screenline Total	5687	5708	0.28	PASS	PASS
Severn Screenline					
M48 Severn Bridge, eastbound	588	650	2.48	PASS	PASS
M4 Second Severn Crossing, eastbound	2511	2532	0.41	PASS	PASS
Severn Screenline Total	3099	3182	1.47	PASS	PASS
North of Motorway Screenline					
A467 north of J28, southbound	1126	1241	3.32	PASS	PASS
B4591 north of J27, southbound	653	615	1.50	PASS	PASS
A4051 north of J26, southbound	1907	1811	2.23	PASS	PASS
A4042 Malpas Relief Road, southbound	1484	1485	0.04	PASS	PASS
B4596 north of J25, southbound	391	456	3.14	PASS	PASS
A449 north of J24, southbound	1101	1149	1.41	PASS	PASS
A48 east of J24, westbound	876	975	3.27	PASS	PASS
North of Motorway Screenline Total	7538	7732	2.21	PASS	PASS
South of Motorway Screenline	1005	10.55		5.00	
A48 SDR east of J28, eastbound	1025	1065	1.24	PASS	PASS
B4591 Risca Rd, eastbound	640	833	7.13	FAIL	FAIL
A4051 south of J26, southbound	855	866	0.39	PASS	PASS
A4042 south of J25a, southbound	1369	1464	2.52	PASS	PASS
B4596 south of J25, southbound	739	633	4.06	FAIL	PASS
B4237 west of J24, westbound	568	697	5.13	FAIL	FAIL
A48 SDR south of J24, southbound	731	788	2.08	PASS	PASS
South of Motorway Screenline Total	5927	6346	5.36	FAIL	FAIL
Motorway Links	2051	2100	1.04	DASS	DACC
M4 I20 I20 eastbound	2702	2109	0.42	TASS DACC	TASS DACC
$\Lambda 48(M)$ 1200 120 easthound	2703	2720	2 50	PASS	TASS DAGG
M4 = 123 = 123 eastbound	2003	3022	1 20	PASS	PASS
M48, east of M4, eastbound	582	493	3.82	PASS	PASS

Table 7.9a:Link Calibration Results (PCUs), PM Peak
Eastbound / Southbound / In to Newport

	Modelled	Observed	GEH	Flow	GEH
	Flow	Flow		Criteria	Criteria
Motorway Sliproads					
M4 J30 eastbound offslip	753	760	0.26	PASS	PASS
M4 J30 eastbound onslip	405	400	0.26	PASS	PASS
M4 J28 eastbound offslip	1285	981	9.03	FAIL	FAIL
M4 J28 eastbound onslip	970	1140	5.23	PASS	FAIL
M4 J27 eastbound offslip	409	633	9.81	FAIL	FAIL
M4 J27 eastbound onslip	381	359	1.12	PASS	PASS
M4 J26 eastbound offslip	1336	1712	1.83	PASS	PASS
M4 J26 eastbound onslip	90	117	2.74	PASS	PASS
M4 J25a eastbound onslip	923	915	0.27	PASS	PASS
M4 J25 eastbound onslip	142	127	1.23	PASS	PASS
M4 J24 eastbound offslip	1480	1484	0.11	PASS	PASS
M4 J24 eastbound onslip	748	752	0.14	PASS	PASS
M4 J23a eastbound offslip	805	806	0.06	PASS	PASS
M4 J23a eastbound onslip	368	366	0.10	PASS	PASS
Miscellaneous Sites					
A4232 south of J30, southbound	1368	1405	1.00	PASS	PASS
A48 west of A4232, eastbound	3582	3497	1.42	PASS	PASS
A48, A4232 to A48(M) J29a, eastbound	3475	3449	0.43	PASS	PASS
B4245 east of Magor rbt, eastbound	930	943	0.41	PASS	PASS
A48 west of Parkwall rbt, eastbound	155	186	2.36	PASS	PASS
A48 east of Parkwall rbt, eastbound	465	489	1.12	PASS	PASS
B4245 south of Parkwall rbt, southbound	328	453	0.02	PASS	PASS
TOTAL ACCEPTABIL	89%	89%			

Modelled FlowObserved FlowGEH CriteriaFlow CriteriaGEH CriteriaEast Screenline M4, 124-J23a, westbound376038241.04PASSPASSA48 east of J24, westbound8769753.27PASSPASSEast Screenline M4, 129-J28, westbound508853002.95PASSPASSWest Screenline M4, 129-J28, westbound508853002.95PASSPASSSevern Screenline M48 Severn Bridge, westbound139713620.94PASSPASSSevern Screenline M48 Severn Bridge, westbound139713620.94PASSPASSSevern Screenline M48 Severn Bridge, westbound139713620.94PASSPASSSevern Screenline M48 Severn Bridge, westbound129021083.41PASSPASSAdc7 north of J28, northbound190418261.80PASSPASSAdo1 north of J29, northbound190212083.41PASSPASSAd40 andth of J24, northbound197319980.55PASSPASSAd49 north of J24, northbound102910041.08PASSPASSAd49 north of J24, northbound110910980.66PASSPASSAd49 north of J24, northbound111910980.66PASSPASSAd49 north of J24, northbound134413140.83PASSPASSAd49 north of J24, northbound102910052.59PASSPASS			-			
East Screenline Ndt 124-123a, westbound 3760 3824 1.04 PASS PASS M4 (124-123a, westbound 876 975 3.27 PASS PASS West Screenline Total 4636 4799 2.38 PASS PASS West Screenline 5088 5300 2.95 PASS PASS M4. 129-128, westbound 904 981 2.52 PASS PASS M48 Severn Bridge, westbound 1397 1362 0.94 PASS PASS Severn Screenline 1397 1362 0.94 PASS PASS M48 Severn Bridge, westbound 1397 1362 0.94 PASS PASS Severn Screenline 1397 1362 0.94 PASS PASS M48 Severn Bridge, westbound 1997 202 8.43 0.00 PASS PASS Adof north of 128, northbound 1904 1826 1.80 PASS PASS Ado1 Andhapas Reief Road, northbound 1927 2019		Modelled Flow	Observed Flow	GEH	Flow Criteria	GEH Criteria
M4, 124-123a, westbound 3760 3824 1.04 PASS PASS A48 east of J24, westbound 876 975 3.27 PASS PASS East Screenline Total 4636 4799 2.38 PASS PASS M4. J29-J28, westbound 5088 5300 2.95 PASS PASS A48 Castleton, westbound 904 981 2.52 PASS PASS West Screenline 994 981 2.52 PASS PASS West Screenline 994 981 2.52 PASS PASS Severn Screenline 1397 1362 0.94 PASS PASS M48 Severn Bridge, westbound 1397 1362 0.94 PASS PASS Severn Screenline Total 4246 4211 0.53 PASS PASS Mot of Motorway Screenline 1994 1826 1.80 PASS PASS Ado Torth of J28, northbound 1992 2007 PASS PASS Ado Torth of J25, nor	East Screenline					
A48 cast of J24, westbound 876 975 3.27 PASS PASS East Screenline Total 4636 4799 2.38 PASS PASS West Screenline M4, J29-J28, westbound 5088 5300 2.95 PASS PASS A48 Castleton, westbound 904 981 2.52 PASS PASS West Screenline M48 Severn Bridge, westbound 1397 1362 0.94 PASS PASS Severn Screenline M48 Severn Bridge, westbound 1397 1362 0.94 PASS PASS North of Motorway Screenline A467 north of J28, northbound 1904 1826 1.80 PASS PASS A4021 north of J27, northbound 1904 1826 1.80 PASS PASS A449 north of J24, northbound 1972 2109 2.07 PASS PASS A449 north of J24, northbound 1927 2019 2.07 PASS PASS A449 north of J24, northbound 1927 2019 2.07 PASS PASS A449 north of J24, northbound	M4, J24-J23a, westbound	3760	3824	1.04	PASS	PASS
East Screenline Total 4636 4799 2.38 PASS PASS West Screenline M4, 129-128, westbound 5088 5300 2.95 PASS PASS PASS M4 Castleton, westbound 904 981 2.52 PASS PASS West Screenline Total 5992 6281 3.70 PASS PASS M48 Sevem Bridge, westbound 1397 1362 0.94 PASS PASS M48 Sevem Crossing, westbound 2849 2849 0.00 PASS PASS Severn Screenline Total 4246 4211 0.53 PASS PASS M46 Scond Severn Crossing, westbound 1904 1826 1.80 PASS PASS Ad67 north of J28, northbound 1902 1208 3.41 PASS PASS Ad402 Majpas Relief Road, northbound 1907 127 0.73 PASS PASS Ad402 majpas Relief Road, northbound 1207 1257 1.42 PASS PASS Ad402 north of J24, northbound 1207 <t< td=""><td>A48 east of J24, westbound</td><td>876</td><td>975</td><td>3.27</td><td>PASS</td><td>PASS</td></t<>	A48 east of J24, westbound	876	975	3.27	PASS	PASS
West Screenline M4, 129-J28, westbound 5088 5300 2.95 PASS PASS M4 Castleton, westbound 904 981 2.52 PASS PASS West Screenline Total 5992 6281 3.70 PASS PASS M48 Sevem Bridge, westbound 1397 1362 0.94 PASS PASS M48 Sevem Bridge, westbound 2849 2849 0.00 PASS PASS Severn Screenline Total 4246 4211 0.53 PASS PASS North of Motorway Screenline 1904 1826 1.80 PASS PASS A467 north of J28, northbound 1902 1208 3.41 PASS PASS A4051 north of J26, northbound 1973 1998 0.55 PASS PASS B4596 north of J24, northbound 1207 1257 1.42 PASS PASS A48 ast of J24, eastbound 1029 1064 1.08 PASS PASS A449 north of J26, northbound 1207 1257 1.42	East Screenline Total	4636	4799	2.38	PASS	PASS
West Screenline 5088 5300 2.95 PASS PASS A48 Castleton, westbound 904 981 2.52 PASS PASS West Screenline Total 5992 6281 3.70 PASS PASS Severn Screenline - - - - - - M48 Severn Bridge, westbound 1397 1362 0.94 PASS PASS Severn Screenline Total 4246 4211 0.53 PASS PASS M48 Severn Grossing, westbound 1904 1826 1.80 PASS PASS Severn Screenline Total 4246 4211 0.53 PASS PASS Morth of Motorway Screenline - - - - - A467 north of J28, northbound 1904 1826 1.80 PASS PASS A4021 Malpas Relief Road, northbound 1927 2019 2.07 PASS PASS A449 north of J26, northbound 1207 1257 1.42 PASS PASS						
M4, 129-128, westbound 5088 5300 2.95 PASS PASS A48 Castleton, westbound 904 981 2.52 PASS PASS West Screenline Total 5992 6281 3.70 PASS PASS Severn Screenline 1397 1362 0.94 PASS PASS M4 Second Severn Crossing, westbound 2849 2849 0.00 PASS PASS Severn Screenline Total 4246 4211 0.53 PASS PASS M4 Second Severn Crossing, westbound 1904 1826 1.80 PASS PASS Ad67 north of J28, northbound 1092 1208 3.41 PASS PASS Ad402 Malpas Relief Road, northbound 1927 2019 2.07 PASS PASS Ad49 north of J26, northbound 1927 1257 1.42 PASS PASS A449 north of J24, northbound 1029 1064 1.08 PASS PASS A449 north of J24, northbound 1029 1064 1.08	West Screenline					
A48 Castleton, westbound 904 981 2.52 PASS PASS West Screenline Total 5992 6281 3.70 PASS PASS Severn Screenline M48 Severn Bridge, westbound 1397 1362 0.94 PASS PASS M48 Severn Bridge, westbound 2849 2849 0.00 PASS PASS Severn Screenline Total 4246 4211 0.53 PASS PASS Morth of Motorway Screenline A467 north of J28, northbound 1904 1826 1.80 PASS PASS A402 Malpas Relief Road, northbound 1927 2019 2.07 PASS PASS A449 north of J26, northbound 1973 1998 0.55 PASS PASS A449 Inst Relief Road, northbound 1207 1257 1.42 PASS PASS A48 east of J24, eastbound 1029 1064 1.08 PASS PASS South of Motorway Screenline Total 9890 10150 2.59 PASS PASS A48 ast of J24, eastbound 1119 <td>M4. J29-J28, westbound</td> <td>5088</td> <td>5300</td> <td>2.95</td> <td>PASS</td> <td>PASS</td>	M4. J29-J28, westbound	5088	5300	2.95	PASS	PASS
West Screenline Total599262813.70PASSPASSSevern Screenline139713620.94PASSPASSM4 Second Severn Crossing, westbound284928490.00PASSPASSSevern Screenline Total424642110.53PASSPASSNorth of Motorway Screenline190418261.80PASSPASSA467 north of J28, northbound190418261.80PASSPASSA4051 north of J27, northbound190720192.07PASSPASSA4024 Malpas Relief Road, northbound197319980.55PASSPASSB4596 north of J24, northbound120712571.42PASSPASSA449 north of J24, northbound102910641.08PASSPASSA48 sast of J24, eastbound111910980.66PASSPASSSouth of Motorway ScreenlineA48 SDR east of J25, northbound134413140.83PASSPASSA48 solk ast of J26, northbound6778375.81FAILFAILA48 SDR east of J26, northbound134413140.83PASSPASSA449 south of J25, northbound134413140.83PASSPASSSouth of Motorway ScreenlineA48 SDR east of J26, entbound134413140.83PASSPASSA449 south of J25, northbound13441344<	A48 Castleton, westbound	904	981	2.52	PASS	PASS
Severn Screenline M48 Severn Bridge, westbound1397 13621362 28490.94 0.00PASS PASS PASSMet Severn Crossing, westbound284928490.00PASS PASSPASSSevern Screenline Total424642110.53PASSPASSMorth of Motorway Screenline A467 north of J28, northbound190418261.80PASSPASSAdof north of J28, northbound190418261.80PASSPASSPASSAdof north of J26, northbound199720192.07PASSPASSAdot Mapa Relief Road, northbound197319980.55PASSPASSAdva Mapa Relief Road, northbound120712571.42PASSPASSB4596 north of J24, northbound102910641.08PASSPASSA48 east of J24, eastbound0029101502.59PASSPASSSouth of Motorway Screenline A48 SDR cast of J28, westbound111910980.66PASSPASSAdv2 south of J25, northbound134413140.83PASSPASSAdv2 south of J25, northbound207317896.45FAILFAILA4951 south of J26, northbound134413140.83PASSPASSAdv2 south of J26, northbound134413140.83PASSPASSAdv2 south of J26, northbound207317896.45FAILFAILA4451 south of J26, northbound207317887831.46PAS	West Screenline Total	5992	6281	3.70	PASS	PASS
Severn Screenline139713620.94PASSPASSM48 Severn Bridge, westbound284928490.00PASSPASSSevern Screenline Total424642110.53PASSPASSNorth of Motorway Screenline424642110.53PASSPASSM457 north of J28, northbound190418261.80PASSPASSB4591 north of J27, northbound109212083.41PASSPASSA4051 north of J26, northbound192720192.07PASSPASSA4042 Malpas Relief Road, northbound197319980.55PASSPASSB4596 north of J24, northbound120712571.42PASSPASSA449 north of J24, northbound100910641.08PASSPASSA48 east of J24, eastbound101910980.66PASSPASSSouth of Motorway ScreenlineA48 SDR east of J28, westbound111910980.66PASSPASSB4591 Risca Rd, westbound207317896.45FAILFAILA4021 south of J25, northbound207317831.46PASSPASSB4591 Risca Rd, westbound207317896.45FAILFAILB4596 south of J25, northbound207317896.45FAILFAILB4596 south of J26, northbound134413140.83PASSPASSB4429 south of J26, northbound13441344<						
M48 Severn Bridge, westbound 1397 1362 0.94 PASS PASS M4 Second Severn Crossing, westbound 2849 2849 0.00 PASS PASS Severn Screenline Total 4246 4211 0.53 PASS PASS North of Motorway Screenline - - - - - - A467 north of J28, northbound 1904 1826 1.80 PASS PASS PASS B4591 north of J27, northbound 1992 1208 3.41 PASS PASS A402 Malpas Relief Road, northbound 1973 1998 0.55 PASS PASS A449 north of J24, northbound 1207 1257 1.42 PASS PASS A48 north of J24, eastbound 1029 1064 1.08 PASS PASS South of Motorway Screenline - - - - - A48 sDR east of J28, westbound 1119 1098 0.66 PASS PASS B4591 Risca Rd, westbound 2073 1789 <td><u>Severn Screenline</u></td> <td></td> <td></td> <td></td> <td></td> <td></td>	<u>Severn Screenline</u>					
M4 Second Severn Crossing, westbound 2849 2849 0.00 PASS PASS Severn Screenline Total 4246 4211 0.53 PASS PASS North of Motorwav Screenline A467 north of J28, northbound 1904 1826 1.80 PASS PASS B4591 north of J27, northbound 1092 1208 3.41 PASS PASS A4051 north of J26, northbound 1927 2019 2.07 PASS PASS A4042 Malpas Relief Road, northbound 1973 1998 0.55 PASS PASS A449 north of J24, northbound 1207 1257 1.42 PASS PASS A48 east of J24, eastbound 1029 1064 1.08 PASS PASS South of Motorway Screenline - - - - - A48 SDR east of J28, westbound 1119 1098 0.66 PASS PASS South of Motorway Screenline - - - - - A48 SDR east of J28, northbound 2073 1789	M48 Severn Bridge, westbound	1397	1362	0.94	PASS	PASS
Severn Screenline Total424642110.53PASSPASSNorth of Motorway Screenline190418261.80PASSPASSA467 north of J28, northbound109212083.41PASSPASSB4591 north of J27, northbound109220092.07PASSPASSA4051 north of J26, northbound197319980.55PASSPASSA4042 Malpas Relief Road, northbound197319980.73PASSPASSB4596 north of J25, northbound120712571.42PASSPASSA449 north of J24, northbound102910641.08PASSPASSA48 east of J24, eastbound102910641.08PASSPASSNorth of Motorway Screenline Total9890101502.59PASSPASSSouth of Motorway ScreenlineA48 SDR east of J28, westbound111910980.66PASSPASSB4591 Risca Rd, westbound134413140.83PASSPASSA4021 south of J26, northbound207317896.45FAILFAILB4596 south of J26, northbound207317896.45FAILFAILB4596 south of J24, astbound4974910.26PASSPASSB4237 west of J24, astbound97410422.15PASSPASSSouth of Motorway Screenline Total750873541.79PASSPASSM4, J32-J30, westbound <td>M4 Second Severn Crossing, westbound</td> <td>2849</td> <td>2849</td> <td>0.00</td> <td>PASS</td> <td>PASS</td>	M4 Second Severn Crossing, westbound	2849	2849	0.00	PASS	PASS
North of Motorwav Screenline Image: North of J28, northbound Image: North of J27, northbound Image: North of J24, northbound Image: North of J	Severn Screenline Total	4246	4211	0.53	PASS	PASS
North of Motorway Screenline Image: North of 128, northbound 1904 1826 1.80 PASS PASS B4591 north of J27, northbound 1092 1208 3.41 PASS PASS A4051 north of J27, northbound 1927 2019 2.07 PASS PASS A4042 Malpas Relief Road, northbound 1973 1998 0.55 PASS PASS B4596 north of J25, northbound 758 778 0.73 PASS PASS A449 north of J24, northbound 1207 1257 1.42 PASS PASS A48 east of J24, eastbound 1029 1064 1.08 PASS PASS North of Motorway Screenline Total 9890 10150 2.59 PASS PASS South of Motorway Screenline - - - - - A48 SDR east of J28, northbound 1119 1098 0.66 PASS PASS B4591 Risca Rd, westbound 1344 1314 0.83 PASS PASS B4595 south of J25, northbound <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
A467 north of J28, northbound 1904 1826 1.80 PASS PASS B4591 north of J27, northbound 1092 1208 3.41 PASS PASS A4051 north of J26, northbound 1927 2019 2.07 PASS PASS A4042 Malpas Relief Road, northbound 1973 1998 0.55 PASS PASS B4596 north of J25, northbound 1758 778 0.73 PASS PASS A449 north of J24, northbound 1207 1257 1.42 PASS PASS A48 east of J24, eastbound 1029 1064 1.08 PASS PASS North of Motorway Screenline 9890 10150 2.59 PASS PASS South of Motorway Screenline - - - - - - A48 SDR east of J28, westbound 1119 1098 0.66 PASS PASS PASS A4042 south of J25, northbound 2073 1789 6.45 FAIL FAIL FAIL B4596 south of J25, northbound 2073 1789 6.45 FAIL FAIL BASS </td <td><u>North of Motorway Screenline</u></td> <td></td> <td></td> <td></td> <td></td> <td></td>	<u>North of Motorway Screenline</u>					
B4591 north of J27, northbound 1092 1208 3.41 PASS PASS A4051 north of J26, northbound 1927 2019 2.07 PASS PASS A4042 Malpas Relief Road, northbound 1973 1998 0.55 PASS PASS B4596 north of J25, northbound 758 778 0.73 PASS PASS A449 north of J24, northbound 1207 1257 1.42 PASS PASS A48 east of J24, eastbound 1029 1064 1.08 PASS PASS North of Motorway Screenline	A467 north of J28, northbound	1904	1826	1.80	PASS	PASS
A4051 north of J26, northbound 1927 2019 2.07 PASS PASS A4042 Malpas Relief Road, northbound 1973 1998 0.55 PASS PASS B4596 north of J25, northbound 758 778 0.73 PASS PASS A449 north of J24, northbound 1207 1257 1.42 PASS PASS A48 east of J24, eastbound 1029 1064 1.08 PASS PASS North of Motorway Screenline 9890 10150 2.59 PASS PASS South of Motorway Screenline	B4591 north of J27, northbound	1092	1208	3.41	PASS	PASS
A4042 Malpas Relief Road, northbound 1973 1998 0.55 PASS PASS B4596 north of J25, northbound 758 778 0.73 PASS PASS A449 north of J24, northbound 1207 1257 1.42 PASS PASS A48 east of J24, eastbound 1029 1064 1.08 PASS PASS North of Motorway Screenline Total 9890 10150 2.59 PASS PASS South of Motorway Screenline - - - - - A48 SDR east of J28, westbound 1119 1098 0.66 PASS PASS B4591 Risca Rd, westbound 677 837 5.81 FAIL FAIL A4042 south of J26, northbound 1344 1314 0.83 PASS PASS B4591 Risca Rd, westbound 2073 1789 6.45 FAIL FAIL B4594 south of J25, northbound 2073 1789 6.45 FAIL FAIL B4594 south of J24, northbound 974 491 0.26 PASS PASS B4237 west of J24, eastbound 497 <td< td=""><td>A4051 north of J26, northbound</td><td>1927</td><td>2019</td><td>2.07</td><td>PASS</td><td>PASS</td></td<>	A4051 north of J26, northbound	1927	2019	2.07	PASS	PASS
B4596 north of J25, northbound 758 778 0.73 PASS PASS A449 north of J24, northbound 1207 1257 1.42 PASS PASS A48 east of J24, eastbound 1029 1064 1.08 PASS PASS North of Motorway Screenline Total 9890 10150 2.59 PASS PASS South of Motorway Screenline 9890 10150 2.59 PASS PASS A48 SDR east of J28, westbound 1119 1098 0.66 PASS PASS B4591 Risca Rd, westbound 677 837 5.81 FAIL FAIL A4051 south of J26, northbound 2073 1789 6.45 FAIL FAIL B4596 south of J25, northbound 2073 1789 6.45 FAIL FAIL B4596 south of J24, northbound 974 1042 2.15 PASS PASS B4237 west of J24, eastbound 497 491 0.26 PASS PASS South of Motorway Screenline Total 7508 7354	A4042 Malpas Relief Road, northbound	1973	1998	0.55	PASS	PASS
A449 north of J24, northbound 1207 1257 1.42 PASS PASS A48 east of J24, eastbound 1029 1064 1.08 PASS PASS North of Motorway Screenline Total 9890 10150 2.59 PASS PASS South of Motorway Screenline	B4596 north of J25, northbound	758	778	0.73	PASS	PASS
A48 east of J24, eastbound 1029 1064 1.08 PASS PASS North of Motorway Screenline Total 9890 10150 2.59 PASS PASS South of Motorway Screenline	A449 north of J24, northbound	1207	1257	1.42	PASS	PASS
North of Motorway Screenline Total 9890 10150 2.59 PASS PASS South of Motorway Screenline -	A48 east of J24, eastbound	1029	1064	1.08	PASS	PASS
South of Motorway Screenline Image: New Streenline New Streenline <thn< th=""><th>North of Motorway Screenline Total</th><th>9890</th><th>10150</th><th>2.59</th><th>PASS</th><th>PASS</th></thn<>	North of Motorway Screenline Total	9890	10150	2.59	PASS	PASS
South of Motorway Screenine 1119 1098 0.66 PASS PASS B4591 Risca Rd, westbound 677 837 5.81 FAIL FAIL FAIL A4051 south of J26, northbound 1344 1314 0.83 PASS PASS A4042 south of J25, northbound 2073 1789 6.45 FAIL FAIL B4596 south of J25, northbound 824 783 1.46 PASS PASS B4237 west of J24, eastbound 497 491 0.26 PASS PASS A48 SDR south of J24, northbound 974 1042 2.15 PASS PASS South of Motorway Screenline Total 7508 7354 1.79 PASS PASS M4, J32-J30, westbound 3720 3859 2.26 PASS PASS M4, J30-J29, westbound 2916 3055 2.55 PASS PASS M4, J30-J29, westbound 2280 2198 1.75 PASS PASS M4, J23a-J23, westbound 3441 3624 3.07						
A48 SDR east of J28, westbound 1119 1098 0.060 PASS PASS B4591 Risca Rd, westbound 677 837 5.81 FAIL FAIL A4051 south of J26, northbound 1344 1314 0.83 PASS PASS A4042 south of J25a, northbound 2073 1789 6.45 FAIL FAIL B4596 south of J25, northbound 824 783 1.46 PASS PASS B4237 west of J24, eastbound 497 491 0.26 PASS PASS A48 SDR south of J24, northbound 974 1042 2.15 PASS PASS Motorway Links	<u>South of Motorway Screenline</u>	1110	1009	0.66	DACC	DACC
B4391 Risca Rd, westbound 677 837 5.81 FAIL FAIL A4051 south of J26, northbound 1344 1314 0.83 PASS PASS A4042 south of J25a, northbound 2073 1789 6.45 FAIL FAIL FAIL B4596 south of J25, northbound 824 783 1.46 PASS PASS B4237 west of J24, eastbound 497 491 0.26 PASS PASS A48 SDR south of J24, northbound 974 1042 2.15 PASS PASS South of Motorway Screenline Total 7508 7354 1.79 PASS PASS M4, J32-J30, westbound 3720 3859 2.26 PASS PASS M4, J30-J29, westbound 2916 3055 2.55 PASS PASS A48(M), J29a – J29, westbound 2280 2198 1.75 PASS PASS M4, J23a-J23, westbound 3441 3624 3.07 PASS PASS	A48 SDR east of J28, westbound	(77	1098	0.00	PASS	PASS
A4051 south of J26, northbound 1344 1314 0.83 PASS PASS A4042 south of J25a, northbound 2073 1789 6.45 FAIL FAIL B4596 south of J25, northbound 824 783 1.46 PASS PASS B4237 west of J24, eastbound 497 491 0.26 PASS PASS A48 SDR south of J24, northbound 974 1042 2.15 PASS PASS South of Motorway Screenline Total 7508 7354 1.79 PASS PASS Motorway Links	A 4051 such a CI2C month and	0//	837	5.81	FAIL	FAIL
A4042 south of J23a, northbound 2073 1789 6.45 FAIL FAIL B4596 south of J25, northbound 824 783 1.46 PASS PASS B4237 west of J24, eastbound 497 491 0.26 PASS PASS A48 SDR south of J24, northbound 974 1042 2.15 PASS PASS South of Motorway Screenline Total 7508 7354 1.79 PASS PASS M4, J32-J30, westbound 3720 3859 2.26 PASS PASS M4, J30-J29, westbound 2916 3055 2.55 PASS PASS A48(M), J29a – J29, westbound 2280 2198 1.75 PASS PASS M4, J23a-J23, westbound 3441 3624 3.07 PASS PASS	A4031 south of J26, northbound	1344	1314	0.85	PASS	PASS
B4390 south of J23, northbound 824 785 1.46 PASS PASS B4237 west of J24, eastbound 497 491 0.26 PASS PASS A48 SDR south of J24, northbound 974 1042 2.15 PASS PASS South of Motorway Screenline Total 7508 7354 1.79 PASS PASS Motorway Links	A4042 south of 125 a northbound	2075	1789	0.43	FAIL DASS	FAIL DASS
B4237 west of J24, eastbound 497 491 0.26 PASS PASS A48 SDR south of J24, northbound 974 1042 2.15 PASS PASS South of Motorway Screenline Total 7508 7354 1.79 PASS PASS Motorway Links	B4390 south of J23, northound B4227 west of J24 costhound	024 407	/85	1.40	PASS	PASS
A48 SDR south of J24, northbound 974 1042 2.15 PASS PASS South of Motorway Screenline Total 7508 7354 1.79 PASS PASS Motorway Links	A 49 SDD south of 124, parth bound	497	491	0.20	PASS	PASS
South of Motorway Screentine Total 7508 7354 1.79 PASS PASS Motorway Links	A48 SDR south of J24, horthbound	9/4	1042	2.15	PASS	PASS
Motorway Links 3720 3859 2.26 PASS PASS M4, J32-J30, westbound 2916 3055 2.55 PASS PASS M4, J30-J29, westbound 2916 3055 2.55 PASS PASS A48(M), J29a – J29, westbound 2280 2198 1.75 PASS PASS M4, J23a-J23, westbound 3441 3624 3.07 PASS PASS	South of Motorway Screenline Total	7508	7354	1.79	PASS	PASS
Motor way Links M4, J32-J30, westbound 3720 3859 2.26 PASS PASS M4, J30-J29, westbound 2916 3055 2.55 PASS PASS A48(M), J29a – J29, westbound 2280 2198 1.75 PASS PASS M4, J33a-J23, westbound 3441 3624 3.07 PASS PASS	Motomyoy Links					
M4, J30-J29, westbound 2916 3055 2.20 PASS PASS M4, J30-J29, westbound 2916 3055 2.55 PASS PASS A48(M), J29a – J29, westbound 2280 2198 1.75 PASS PASS M4, J23a-J23, westbound 3441 3624 3.07 PASS PASS	M4 I32-I30 westhound	3720	3850	2.26	DVCC	DVCC
A48(M), J29a – J29, westbound 2280 2198 1.75 PASS PASS M4, J23a-J23, westbound 3441 3624 3.07 PASS PASS	MA I30 I20 westbound	2016	3055	2.20	PACC	DACC
M4, J23a-J23, westbound 2260 2196 1.75 FASS FASS M4, J23a-J23, westbound 3441 3624 3.07 PASS PASS	$\Lambda/8(M)$ [29a = 120 westbound	2910	2108	2.55	PACC	DACC
1V1T, J2Ja-J2J, WOSUDUIIU JTT1 J024 J.07 IASS FASS	M4 I232-I23 westhound	3441	3624	3.07	PASS	PASS
I M4X east of M4 westbound I 592 I 768 I 674 I FAII I FAII	M48 east of M4 westbound	592	768	6 74	FAII	FAII

Table 7.9b: Link Calibration Results (PCUs), PM Peak Westbound / Northbound / Out from Newport

	Modelled	Observed	GEH	Flow	GEH
	Flow	Flow		Criteria	Criteria
Motorway Sliproads					
M4 J30 westbound offslip	389	478	4.30	PASS	PASS
M4 J30 westbound onslip	708	719	0.41	PASS	PASS
M4 J28 westbound offslip	782	858	2.64	PASS	PASS
M4 J28 westbound onslip	1461	1462	0.04	PASS	PASS
M4 J27 westbound offslip	156	169	0.99	PASS	PASS
M4 J27 westbound onslip	977	853	4.09	PASS	PASS
M4 J26 westbound offslip	123	132	0.84	PASS	PASS
M4 J26 westbound onslip	2103	1966	3.05	PASS	PASS
M4 J25a westbound onslip	819	746	2.63	PASS	PASS
M4 J25 westbound onslip	432	376	2.79	PASS	PASS
M4 J24 westbound offslip	860	904	1.47	PASS	PASS
M4 J24 westbound onslip	1158	1152	0.16	PASS	PASS
M4 J23a westbound offslip	318	345	1.50	PASS	PASS
M4 J23a westbound onslip	1122	1116	0.20	PASS	PASS
Miscellaneous Sites					
A4232 south of J30, northbound	1092	1103	0.34	PASS	PASS
A48 west of A4232, westbound	3661	3784	2.01	PASS	PASS
A48, A4232 to A48(M) J29a, westbound	3690	3762	1.18	PASS	PASS
B4245 east of Magor rbt, westbound	548	596	2.01	PASS	PASS
A48 west of Parkwall rbt, westbound	237	234	0.22	PASS	PASS
A48 east of Parkwall rbt, westbound	671	658	0.50	PASS	PASS
B4245 south of Parkwall rbt, northbound	452	328	0.05	PASS	PASS
TOTAL ACCEPTABILITY CRITERIA					93%

8 Model Validation

8.1 Introduction

Validation is the process of demonstrating the quality of the model by comparing the model output with observed data, which should be independent of data used for model development. This section outlines the outcomes from the M4 model validation process.

8.2 Flow Validation

The WebTAG requirements for flow validation are shown in Table 7.3. For the M4 model, validation was carried out on the mainline motorway links between Junction 23a and 29, together with a screenline of links crossing the River Usk in the Newport area, as shown in Figure 7.1. Tables 8.1 to 8.3 provide a comparison between modelled and observed flows on the validation links.

The results show that, in all time periods, the validation of flows on the motorway links between Junction 23a and Junction 29 passed both the flow and GEH criteria in all cases. This was also the case for the links crossing the River Usk, together with the total screenline flow.

Overall, the total percentage of validation links satisfying both criteria was well above the required 85% recommended in WebTAG in all time periods. The results therefore indicate that the validation of traffic flows is very good.

	Modelled Flow	Observed Flow	GEH	Flow Criteria	GEH Criteria
Motorway Fastbound Flows				Criteria	Critteria
M4 129-128 eastbound	5604	5741	1.83	PASS	PASS
M4 J28-J27 eastbound	5043	5165	1.05	PASS	PASS
M4, 526 527, castbound M4, 127-126, eastbound	5164	5308	1.70	PASS	PASS
M4 126-125a eastbound	3636	3617	0.31	PASS	PASS
M4 125a-125 eastbound	4617	4548	1.02	PASS	PASS
M4 J25-J24 eastbound	4795	4738	0.83	PASS	PASS
M4, J24-J23a, eastbound	4010	3894	1.85	PASS	PASS
Motorway Westhound Flows					
M4 128-129 westbound	5264	5233	0.43	PASS	PASS
M4 I27-I28 westbound	6023	6032	0.13	PASS	PASS
M4 J26-J27 westbound	5562	5357	2.78	PASS	PASS
M4, J25a-J26, westbound	3544	3435	1.85	PASS	PASS
M4, J25-J25a, westbound	4498	4452	0.69	PASS	PASS
M4, J24-J25, westbound	4624	4607	0.24	PASS	PASS
M4, J23a-J24, westbound	3634	3594	0.65	PASS	PASS
Usk Screenline, Eastbound Flows					
M4, J26-J25a, eastbound	3636	3617	0.31	PASS	PASS
Brynglas Relief Rd, eastbound to J25a	1515	1530	0.39	PASS	PASS
B4591 Newport Bridge, eastbound	1071	1053	0.54	PASS	PASS
B4237 George Street Bridge, eastbound	488	458	1.40	PASS	PASS
A48 SDR Bridge, eastbound	1438	1471	0.86	PASS	PASS
Usk Screenline, Eastbound Total	8148	8129	0.21	PASS	PASS
Usk Screenline, Westbound Flows					
M4, J25a-J26, westbound	3544	3435	1.85	PASS	PASS
Brynglas Relief Rd, westbound from J25a	1959	2023	1.45	PASS	PASS
B4591 Newport Bridge, westbound	924	863	2.04	PASS	PASS
B4237 George Street Bridge, westbound	802	854	1.82	PASS	PASS
A48 SDR Bridge, westbound	1335	1326	0.23	PASS	PASS
Usk Screenline, Westbound Total	8563	8502	0.67	PASS	PASS
TOTAL ACCEPTABILITY CRITERIA					100%

Table 8.1: AM Peak Flow Validation (PCUs)

	Modelled Flow	Observed Flow	GEH	Flow	GEH Criitoria
				Criteria	Criteria
Motorway Eastbound Flows		1000		2100	2.00
M4, J29-J28, eastbound	3713	4003	4.68	PASS	PASS
M4, J28-J27, eastbound	3582	3803	3.64	PASS	PASS
M4, J27-J26, eastbound	3624	3838	3.49	PASS	PASS
M4, J26-J25a, eastbound	2690	2737	0.90	PASS	PASS
M4, J25a-J25, eastbound	3403	3495	1.56	PASS	PASS
M4, J25-J24, eastbound	3460	3588	2.16	PASS	PASS
M4, J24-J23a, eastbound	3105	2940	2.99	PASS	PASS
Motorway Westbound Flows					
M4, J28-J29, westbound	3492	3778	4.75	PASS	FAIL
M4, J27-J28, westbound	3433	3558	2.12	PASS	PASS
M4, J26-J27, westbound	3716	3788	1.17	PASS	PASS
M4, J25a-J26, westbound	2662	2688	0.49	PASS	PASS
M4, J25-J25a, westbound	3325	3329	0.06	PASS	PASS
M4, J24-J25, westbound	3449	3457	0.14	PASS	PASS
M4, J23a-J24, westbound	3102	2850	4.62	PASS	PASS
Usk Screenline, Eastbound Flows					
M4, J26-J25a, eastbound	2690	2737	0.90	PASS	PASS
Brynglas Relief Rd, eastbound to J25a	1156	1156	0.00	PASS	PASS
B4591 Newport Bridge, eastbound	837	963	4.19	PASS	PASS
B4237 George Street Bridge, eastbound	637	627	0.39	PASS	PASS
A48 SDR Bridge, eastbound	1423	1382	1.09	PASS	PASS
Usk Screenline, Eastbound Total	6743	6865	1.48	PASS	PASS
Usk Screenline, Westbound Flows					
M4, J25a-J26, westbound	2662	2688	0.49	PASS	PASS
Brynglas Relief Rd, westbound from J25a	1179	1156	0.68	PASS	PASS
B4591 Newport Bridge, westbound	911	885	0.85	PASS	PASS
B4237 George Street Bridge, westbound	649	624	0.99	PASS	PASS
A48 SDR Bridge, westbound	1292	1304	0.34	PASS	PASS
Usk Screenline, Westbound Total	6693	6657	0.44	PASS	PASS
TOTAL ACCEPTABILITY CRITERIA					96%

Table 8.2: Interpeak Flow Validation (PCUs)

	Modelled	Observed	GEH	Flow	GEH
	Flow	Flow		Criteria	Criteria
Motorway Eastbound Flows					
M4, J29-J28, eastbound	5088	5041	0.66	PASS	PASS
M4, J28-J27, eastbound	4773	5049	3.94	PASS	PASS
M4, J27-J26, eastbound	4745	4810	0.94	PASS	PASS
M4, J26-J25a, eastbound	3199	3140	1.04	PASS	PASS
M4, J25a-J25, eastbound	4123	4027	1.50	PASS	PASS
M4, J25-J24, eastbound	4264	4181	1.28	PASS	PASS
M4, J24-J23a, eastbound	3533	3459	1.24	PASS	PASS
Motorway Westbound Flows					
M4, J28-J29, westbound	5196	5300	1.44	PASS	PASS
M4, J27-J28, westbound	4898	4875	0.33	PASS	PASS
M4, J26-J27, westbound	5286	5145	1.95	PASS	PASS
M4, J25a-J26, westbound	3305	3513	3.56	PASS	PASS
M4, J25-J25a, westbound	4283	4367	1.28	PASS	PASS
M4, J24-J25, westbound	4439	4539	1.51	PASS	PASS
M4, J23a-J24, westbound	3760	3824	1.04	PASS	PASS
Usk Screenline, Eastbound Flows					
M4, J26-J25a, eastbound	3199	3140	1.04	PASS	PASS
Brynglas Relief Rd, eastbound to J25a	1852	1710	3.36	PASS	PASS
B4591 Newport Bridge, eastbound	1097	1175	2.31	PASS	PASS
B4237 George Street Bridge, eastbound	745	778	1.20	PASS	PASS
A48 SDR Bridge, eastbound	1316	1416	2.70	PASS	PASS
Usk Screenline, Eastbound Total	8209	8219	0.12	PASS	PASS
Usk Screenline, Westbound Flows					
M4, J25a-J26, westbound	3305	3513	3.56	PASS	PASS
Brynglas Relief Rd, westbound from J25a	1636	1782	3.52	PASS	PASS
B4591 Newport Bridge, westbound	930	894	1.19	PASS	PASS
B4237 George Street Bridge, westbound	629	592	1.48	PASS	PASS
A48 SDR Bridge, westbound	1386	1355	0.84	PASS	PASS
Usk Screenline, Westbound Total	7886	8136	2.79	PASS	PASS
TOTAL ACCEPTABILITY CRITERIA					100%

Table 8.3: PM Peak Flow Validation (PCUs)

8.3 **Proportion of Heavy Goods Vehicles**

In addition to the traffic flow validation, additional checks were made on the percentage of Heavy Goods Vehicles (HGVs) modelled on the motorway. The proportion of HGVs is important for use in the environmental assessment of air quality and noise.

Tables 8.4 to 8.6 show the modelled and observed volumes of HGVs on the motorway links around Newport. The results show that the HGV volumes and their percentage of total flow on the motorway links in the model closely represent the observed situation.

T taile	Total V	al Vehicles		FVs	Percentage HGVs	
LINK	Observed	Modelled	Observed	Modelled	Observed	Modelled
M4 J32-J30, e/b	4060	4056	300	280	7.4%	6.9%
M4 J30-J29, e/b	2876	2928	265	258	9.2%	8.8%
A48(M) J29a-J29, e/b	2043	2095	120	124	5.9%	5.9%
M4 J29-J28, e/b	5083	5023	436	382	8.6%	7.6%
M4 J28-J27, e/b	4568	4549	408	324	8.9%	7.1%
M4 J27-J26, e/b	4671	4661	422	331	9.0%	7.1%
M4 J26-J25a, e/b	3103	3216	337	280	10.9%	8.7%
M4 J25-J24, e/b	4156	4307	377	323	9.1%	7.5%
M4 J24-J23a, e/b	3324	3470	382	359	11.5%	10.3%
M4 J23a-J23, e/b	3127	3399	322	358	10.3%	10.5%
M48 J23 (M4)-J2, e/b	520	571	50	53	9.5%	9.3%
M4 J23-J22, e/b	2975	2828	311	306	10.5%	10.8%
		Ave	rage Percen	tage HGVs	9.8%	8.4%
M4 J30-J32, w/b	2858	3050	366	329	12.8%	10.8%
M4 J29-J30, w/b	2704	2722	345	322	12.7%	11.8%
A48(M) J29-J29a, w/b	1922	1919	127	91	6.6%	4.7%
M4 J28-J29, w/b	4630	4640	427	413	9.2%	8.9%
M4 J27-J28, w/b	5394	5482	417	357	7.7%	6.5%
M4 J26-J27, w/b	4692	5011	443	365	9.4%	7.3%
M4 J25a-J26, w/b	2885	3068	366	317	12.7%	10.3%
M4 J24-J25, w/b	3958	4085	432	358	10.9%	8.8%
M4 J23a-J24, w/b	3074	3193	351	292	11.4%	9.2%
M4 J23-J23a, w/b	2465	2499	296	298	12.0%	11.9%
M48 J2-J23 (M4), w/b	634	646	62	66	9.7%	10.2%
M4 J22-J23, w/b	1858	1853	235	232	12.6%	12.5%
Average Percentage HGVs						9.0%

Table 8.4: HGV Flow Validation, AM Peak

Link	Total V	ehicles	НС	ïVs	Percentage HGVs		
Link	Observed	Modelled	Observed	Modelled	Observed	Modelled	
M4 J32-J30, e/b	2012	2135	299	307	14.9%	14.4%	
M4 J30-J29, e/b	1797	1825	276	283	15.4%	15.5%	
A48(M) J29a-J29, e/b	1264	1248	135	138	10.7%	11.0%	
M4 J29-J28, e/b	3270	3073	506	421	15.5%	13.7%	
M4 J28-J27, e/b	3180	3057	447	345	14.1%	11.3%	
M4 J27-J26, e/b	3234	3099	431	345	13.3%	11.1%	
M4 J26-J25a, e/b	2268	2239	317	299	14.0%	13.3%	
M4 J25-J24, e/b	2969	2914	430	360	14.5%	12.4%	
M4 J24-J23a, e/b	2365	2503	388	397	16.4%	15.9%	
M4 J23a-J23, e/b	2241	2325	436	442	19.5%	19.0%	
M48 J23 (M4)-J2, e/b	294	332	61	57	19.2%	17.2%	
M4 J23-J22, e/b	2018	1993	394	385	19.5%	19.3%	
		Ave	rage Percen	tage HGVs	15.3%	13.8%	
M4 J30-J32, w/b	1875	1946	278	261	14.8%	13.4%	
M4 J29-J30, w/b	1602	1654	265	260	16.5%	15.7%	
A48(M) J29-J29a, w/b	1208	1222	147	144	12.2%	11.8%	
M4 J28-J29, w/b	3088	2876	468	404	15.1%	14.1%	
M4 J27-J28, w/b	2981	2853	393	380	13.2%	13.3%	
M4 J26-J27, w/b	3126	3124	458	389	14.7%	12.4%	
M4 J25a-J26, w/b	2152	2130	358	353	16.6%	16.6%	
M4 J24-J25, w/b	2843	2850	422	395	14.8%	13.9%	
M4 J23a-J24, w/b	2319	2497	354	400	15.3%	16.0%	
M4 J23-J23a, w/b	2025	2084	350	383	17.3%	18.4%	
M48 J2-J23 (M4), w/b	384	381	65	65	17.1%	17.1%	
M4 J22-J23, w/b	1786	1703	309	318	17.3%	18.7%	
	15.2%	14.9%					

Table 8.5: HGV Flow Validation, Interpeak

I. L	Total V	ehicles	НС	aVs	Percentage HGVs		
Link	Observed	Modelled	Observed	Modelled	Observed	Modelled	
M4 J32-J30, e/b	2745	2704	228	227	8.3%	8.4%	
M4 J30-J29, e/b	2399	2380	213	216	8.9%	9.1%	
A48(M) J29a-J29, e/b	2094	2262	77	77	3.7%	3.4%	
M4 J29-J28, e/b	4572	4642	312	293	6.8%	6.3%	
M4 J28-J27, e/b	4668	4349	254	278	5.4%	6.4%	
M4 J27-J26, e/b	4414	4330	266	272	6.0%	6.3%	
M4 J26-J25a, e/b	2779	2809	233	259	8.4%	9.2%	
M4 J25-J24, e/b	3774	3842	275	279	7.3%	7.3%	
M4 J24-J23a, e/b	3033	3135	277	263	9.1%	8.4%	
M4 J23a-J23, e/b	2612	2677	254	277	9.7%	10.3%	
M48 J23 (M4)-J2, e/b	448	529	30	35	6.7%	6.6%	
M4 J23-J22, e/b	2501	2147	260	242	10.4%	11.3%	
		Ave	rage Percen	tage HGVs	7.6%	7.7%	
M4 J30-J32, w/b	3533	3440	182	187	5.2%	5.4%	
M4 J29-J30, w/b	2772	2639	175	185	6.3%	7.0%	
A48(M) J29-J29a, w/b	2080	2173	69	68	3.3%	3.1%	
M4 J28-J29, w/b	4936	4812	244	253	4.9%	5.2%	
M4 J27-J28, w/b	4552	4529	222	242	4.9%	5.4%	
M4 J26-J27, w/b	4806	4909	237	247	4.9%	5.0%	
M4 J25a-J26, w/b	3202	2959	233	230	7.3%	7.8%	
M4 J24-J25, w/b	4189	4055	238	254	5.7%	6.3%	
M4 J23a-J24, w/b	3486	3415	227	229	6.5%	6.7%	
M4 J23-J23a, w/b	3274	3115	205	216	6.3%	6.9%	
M48 J2-J23 (M4), w/b	725	548	27	29	3.7%	5.4%	
M4 J22-J23, w/b	3180	2567	218	187	6.9%	7.3%	
	5.5%	6.0%					

Table 8.6: HGV Flow Validation, PM Peak

8.4 Journey Time Validation

The purpose of journey time validation is to show that the model is correctly replicating journey times on critical routes. The WebTAG criterion for journey time comparisons is that the modelled journey times should be within 15% of the observed time (or 1 minute if higher) on at least 85% of routes surveyed.

Journey time surveys were carried out on 11 key routes through the study area, as shown in Figure 3.4. The journey time comparisons for each of the surveyed routes in the morning and evening peak periods are shown in Tables 8.7 to 8.9. Graphs illustrating the cumulative modelled and observed journey times for the surveyed routes are given in Appendix B.

The results show that the validation of journey times in each of the modelled time periods meets the WebTAG requirements on all of the surveyed routes, indicating a satisfactory representation of the network operation in the study area.

No	No Route Description		O	Observed Time (mins:secs)			% diff from	DMRB Criteria
			Min	Avge	Max	(mins:secs)	avge	
1	M4, J23a to J30	east	14:55	15:33	16:36	15:56	+2.5%	PASS
		west	14:46	15:32	16:38	16:33	+6.5%	PASS
2	A48/A4232 to A48 Cypress Drive rbt (via A48(M) and M4	anti c/wise	12:06	13:24	14:25	13:28	+0.5%	PASS
	J28)	c/wise	12:12	13:45	16:02	13:55	+1.2%	PASS
3	A467/B4591 Rogerstone to	east	09:17	12:38	18:56	13:36	+7.6%	PASS
	B4237/Kingsway	west	08:16	10:18	14:45	11:00	+6.8%	PASS
4	A48 SDR, Pont Ebbw rbt to M4	east	10:03	10:47	12:04	10:58	+1.7%	PASS
	J24	west	10:31	12:25	13:17	11:47	-5.1%	PASS
5	B4591 Chartist Drive,	east	11:30	13:32	16:08	13:55	+2.8%	PASS
	Rogerstone to M4 J25 (via Newport Bridge)	west	11:11	13:24	16:21	13:47	+2.9%	PASS
6	A4051 Malpas Rd/Cwmbran	south	12:34	14:49	17:36	15:24	+3.9%	PASS
	Drive to A48 SDR / Corporation Rd	north	14:34	16:09	19:41	16:22	+1.3%	PASS
7	A4042 Usk Way, Cwmbran	south	07:02	08:06	09:10	08:41	+7.2%	PASS
	Drive to A48 SDR	north	06:41	07:29	08:19	08:01	+7.1%	PASS
8	B4237, M4 J24 to Kingsway	east	07:57	09:00	10:58	9:07	+1.3%	PASS
		west	10:06	13:26	22:51	12:53	-4.1%	PASS
9	A48, M4 J24 to B4245 Parkwall	east	12:37	13:04	13:29	12:25	-5.0%	PASS
	rbt	west	12:54	13:41	15:14	12:23	-9.5%	PASS
10	B4245 Magor rbt to M48 J2	east	17:22	18:19	19:55	18:37	+1.6%	PASS
		west	17:07	18:53	22:19	18:51	-0.2%	PASS
11	M4 / M48 Severn crossings loop, between J23a and M5	anti c/wise	30:43	33:36	38:34	31.45	-5.5%	PASS
	interchange	c/wise	29:17	31:51	36:54	31:44	-0.4%	PASS
TOTAL ACCEPTABILITY CRITERIA 10							100%	

Table 8.7: AM Peak Journey Time Validation

No	No Route Description		Observed Time (mins:secs)			Modelled Time	% diff from	DMRB Criteria
			Min	Avge	Max	(mins:secs)	avge	
1	M4, J23a to J30	east	14:15	14:48	16:12	15:02	+1.6%	PASS
		west	14:35	14:52	15:13	15:19	+3.0%	PASS
2	A48/A4232 to A48 Cypress Drive rbt (via A48(M) and M4	anti c/wise	11:26	11:58	12:31	12:23	+3.5%	PASS
	J28)	c/wise	12:26	12:37	13:02	12:59	+2.9%	PASS
3	A467/B4591 Rogerstone to	east	10:41	12:19	15:10	11:21	-7.8%	PASS
	B4237/Kingsway	west	08:29	09:17	10:27	09:08	-1.6%	PASS
4	A48 SDR, Pont Ebbw rbt to M4	east	10:32	11:15	12:15	11:08	-1.0%	PASS
	J24		09:27	11:07	12:41	10:53	-2.1%	PASS
5	B4591 Chartist Drive,	east	11:28	12:28	13:07	12:19	-1.2%	PASS
	Rogerstone to M4 J25 (via Newport Bridge)	west	11:55	12:56	13:30	14:14	+10.0%	PASS
6	A4051 Malpas Rd/Cwmbran	south	13:15	14:51	17:25	13:47	-7.2%	PASS
	Drive to A48 SDR / Corporation Rd	north	13:48	15:17	16:14	14:33	-4.8%	PASS
7	7 A4042 Usk Way, Cwmbran		08:09	08:58	10:00	08:36	-4.1%	PASS
	Drive to A48 SDR	north	07:16	08:10	09:10	07:48	-4.5%	PASS
8	B4237, M4 J24 to Kingsway	east	09:11	11:04	13:41	10:13	-7.7%	PASS
		west	11:56	13:11	15:04	12:41	-3.8%	PASS
9	A48, M4 J24 to B4245 Parkwall	east	12:51	13:12	13:42	12:25	-5.9%	PASS
	rbt	west	13:03	13:16	14:00	12:13	-7.9%	PASS
10	B4245 Magor rbt to M48 J2	east	17:38	18:07	19:24	18:25	+1.7%	PASS
		west	17:05	17:38	18:14	18:38	+5.7%	PASS
11	M4 / M48 Severn crossings loop, between J23a and M5	anti c/wise	26:14	30:50	34:15	30:50	0.0%	PASS
	interchange	c/wise	29:02	30:03	33:10	31:20	+4.3%	PASS
TOTAL ACCEPTABILITY CRITERIA 10						100%		

Table 8.8: Interpeak Journey Time Validation

No	o Route Description		O	Observed Time (mins:secs)			% diff from	DMRB Criteria
			Min	Avge	Max	(mins:secs)	avge	
1	M4, J23a to J30	east	14:09	14:36	15:03	15:31	+6.3%	PASS
		west	14:59	16:03	17:14	16:09	+0.6%	PASS
2	A48/A4232 to A48 Cypress Drive rbt (via A48(M) and M4	anti c/wise	13:01	14:14	15:58	14:22	+0.9%	PASS
	J28)	c/wise	12:38	14:54	16:45	14:29	-2.8%	PASS
3	A467/B4591 Rogerstone to	east	09:49	11:31	12:03	11:17	-2.0%	PASS
	B4237/Kingsway	west	08:39	13:30	17:33	13:44	+1.7%	PASS
4	A48 SDR, Pont Ebbw rbt to M4	east	11:18	13:18	18:24	12:03	-9.4%	PASS
	J24	west	10:37	11:22	12:03	11:32	+1.5%	PASS
5	B4591 Chartist Drive,	east	10:59	13:24	17:16	12:41	-5.3%	PASS
	Rogerstone to M4 J25 (via Newport Bridge)	west	11:45	13:54	19:13	14:20	+3.1%	PASS
6	A4051 Malpas Rd/Cwmbran	south	13:24	15:12	17:29	15:36	+2.6%	PASS
	Drive to A48 SDR / Corporation Rd	north	13:48	17:31	20:35	17:07	-2.3%	PASS
7	A4042 Usk Way, Cwmbran	south	08:17	09:36	11:41	08:48	-8.3%	PASS
	Drive to A48 SDR	north	09:11	10:41	14:39	10:08	-5.1%	PASS
8	B4237, M4 J24 to Kingsway	east	09:39	12:20	17:42	11:55	+3.9%	PASS
		west	11:08	14:28	16:42	13:53	-4.0%	PASS
9	A48, M4 J24 to B4245 Parkwall	east	12:00	12:41	13:25	12:24	-2.2%	PASS
	rbt	west	12:06	13:00	13:36	12:12	-6.1%	PASS
10	B4245 Magor rbt to M48 J2	east	16:42	19:24	21:42	18:31	-4.5%	PASS
		west	16:07	18:19	20:31	19:01	+3.8%	PASS
11	M4 / M48 Severn crossings loop, between J23a and M5	anti c/wise	28:31	30:04	33:16	31:24	+4.4%	PASS
	interchange	c/wise	29:06	30:08	32:21	31:25	+4.3%	PASS
	TOTAL ACCEPTABILITY CRITERIA 1							100%

Table 8.9: PM Peak Journey Time Validation

9 Variable Demand Model Calibration

9.1 Introduction

Current Transport Analysis Guidance indicates that traffic forecasts should be produced using variable demand modelling as reported in section 9.2 below. Before the variable demand traffic forecasts are prepared, realism testing on the base year model is required to demonstrate that the M4 traffic model responds to changes in cost and time in a realistic way. WebTAG Unit M2¹⁵ states that checks should be carried out for each user class and for each time period with respect to changes in car fuel cost and car journey time.

The variable demand modelling is undertaken using DIADEM software, which has been developed to provide a consistent tool by which current WebTAG advice on variable demand modelling can be applied. This chapter describes the realism tests undertaken on the M4 validated base year traffic model.

9.2 The Need for Variable Demand Modelling

WebTAG Unit M2 states that under certain circumstances it is acceptable to base the assessment of a scheme on a fixed demand traffic model. This is the case when the scheme is quite modest either spatially or financially and also in terms of its effect on travel costs. However, scheme costs for options considered for the M4 corridor around Newport are significantly in excess of the £5 million limit defined within WebTAG.

A fixed demand traffic model would therefore only be deemed sufficient to assess the M4 corridor around Newport if the following criteria are met:

- No congestion on the network in the forecast years in the absence of the scheme; and
- No appreciable effect on travel choices such as mode of travel or the distribution of travel patterns in the corridor containing the scheme.

Assessing these criteria in the context of the M4 corridor around Newport indicates the need for variable demand modelling because even under existing conditions traffic congestion is regularly observed and is forecast to worsen as a result of underlying growth in travel demand. The scheme is also expected to have a slight effect on distribution of travel patterns and competition between private travel modes and public transport in the study area.

9.3 Form of the Demand Model and Matrices

DfT recommendation in WebTAG has been followed in setting up an incremental rather than an absolute model. Incremental models predict *changes* in demand when fed by *changes* in costs.

The variable demand model for the M4 traffic model uses trip demand matrices in Origin-Destination (O-D) format rather than Production-Attraction (P-A) format. This is because at the time that the base matrices were originally developed from

¹⁵ Transport Analysis Guidance Unit M2, Variable Demand Modelling, Department for Transport, January 2014

the 2005 roadside interview surveys, the DIADEM software was only able to process matrices in O-D format.

9.4 **Responses in Variable Demand Modelling**

Variable demand modelling can include a number of different responses to changes in travel costs. One of these is changing route, which is controlled by the M4 SATURN model as part of the model assignment process. Four additional potential model responses are available in DIADEM:

- trip generation / frequency;
- mode choice;
- trip distribution; and
- time of day choice.

In the case of the M4 model, the trip generation / frequency and redistribution responses have been included. In the absence of a mode choice model, the frequency response has also been used as a proxy for mode transfer.

Another possible response is the re-timing of trips, which can be split into two distinct elements:

- macro time period choice, where travellers alter the timing of their activities and hence the time of day in which they travel; and
- micro time period choice, representing much smaller adjustments to departure times resulting in peak spreading.

Macro time period choice is typically only required where time period specific toll charges are introduced on highway schemes. If forecast models predict unrealistically severe congestion within peak hours then micro time period choice modelling can be introduced to reallocate trips between the peak hour and the shoulders of the peak to achieve a more realistic estimate.

In the case of the M4 study, it is unlikely that future year scenarios will introduce a differential in travel cost at different times of day which would be strong enough to lead to a significant shift in trips from peak to interpeak. Whilst congestion levels within the peak are forecast to increase the majority of peak spreading would occur within the peak hours represented in the M4 Saturn model and would therefore not lead to a notable change in the demand within the peak hour. For these reasons, the re-timing of trips has not been included as a response in the M4 variable demand modelling.

In DIADEM, each demand response is controlled by the spread parameter λ and, where there is more than one response, the scaling parameter θ . In order to quantify the scale of redistribution of trips, appropriate spread parameter values were required for each of the modelled trip purposes. In the case of the M4 base year model it was assumed that:

- Commuter trips are doubly constrained in all time periods;
- Employer's Business and Other trip purposes are origin-constrained in the AM peak and Interpeak, and destination-constrained in the PM peak.

In developing the variable demand model parameters to be used in forecasting, the initial values were based on median illustrative values of λ by journey purpose quoted in WebTAG. A systematic approach was then followed to calibrate the parameters as described in Section 9.6 of this report.

9.5 Convergence

DIADEM software undertakes the variable demand modelling process in response to changing travel times or costs. The process is iterative and modifies the model demand matrices between SATURN assignments until a balance is achieved between the traffic assignment and the demand model. How well this balance or equilibrium has been achieved is defined using convergence criteria such as the demand/supply gap.

The objective of this process is to achieve well converged models with realistic demand responses, thereby improving the accuracy of the scheme benefit calculations. WebTAG Unit M2 recommends, where possible, to achieve a demand/supply gap of less than 0.1%. If that cannot be reached then a convergence level of at least 0.2% is recommended.

Table 9.1 shows the gap convergence measure achieved by the M4 base year model. The results indicate that the demand/supply gap for all the time periods is around 0.1% or less and that an acceptable level of convergence has therefore been achieved.

Time Period	Gap Convergence
AM Peak	0.11%
Interpeak	0.06%
PM Peak	0.08%

Table 9.1: Realism Test Model Convergence

9.6 Realism Testing

9.6.1 Fuel Cost Elasticity

Once a variable demand model has been constructed, it is essential to ensure that it behaves "realistically", by changing the various components of travel costs and checking that the overall response of demand accords with empirical data.

For the M4 base year model the elasticity of vehicle kilometres with respect to fuel cost was calculated for all three modelled time periods, based on a 10% increase in fuel price as recommended in WebTAG Unit M2.

The formulation used to calculate the fuel cost elasticity is:

$$\mathbf{e}_{fuel} = \frac{(\log(T^1) - \log(T^0))}{(\log(C^1) - \log(C^0))}$$

where the superscripts 0 and 1 indicate values of the demand, T, and cost, C, before and after the fuel cost change respectively.

The outturn elasticity of car kilometres with respect to fuel cost should lie between -0.25 and -0.35.

Two separate tests are required to establish the response of trips to changes in fuel cost. One is based on an analysis of the network and the other is based on an analysis of the matrix. The matrix-based analysis includes long distance journeys travelling between the study area and destinations spread throughout the rest of the UK, whereas the network-based test helps isolate the effect of variable demand responses within the area of the model that has been represented in the highest level of detail without being skewed by the effect of long distance travel to destinations throughout the UK. Long distance journeys which both start and end a long distance away from the M4 corridor around Newport were treated as fixed demand.

A systematic calibration process was followed in order to establish a set of parameters that would return the required outturn fuel cost elasticity. Initial calibration runs were based on illustrative parameter values from WebTAG and excluded cost damping. However, WebTAG states that there is some evidence that the sensitivity of demand responses to changes in travel cost reduces with increasing trip length and that this variation may need to be represented in the demand model. Consequently cost damping was introduced into the M4 variable demand model as part of the calibration process after initial runs without cost damping had shown to be too responsive to travel costs, in particular for longer distance trips. Details of the calibration of variable demand parameters including those used for cost damping are included in Appendix C.

Cost damping parameters are defined such that trips which are longer than 30km start to experience some form of reduction to their generalised costs which leads to a weakened demand response. The effect of cost damping increases with increasing trip length, so that long trips become less responsive to changes in travel costs resulting from the M4 scheme around Newport compared to short trips.

The results of the fuel cost realism tests are summarised in Table 9.2, along with the final calibrated spread parameters λ and the scaling parameters θ . These parameters will be carried forward to the variable demand forecast models.

Time	User Class	Control Parameters		Netwo	ork-based	Elasticity	Matrix-based Elasticity		
Period		λ	θ	User Class	Time Period	Annual Average	User Class	Time Period	Annual Average
	Business	-0.074	0.05	-0.09			-0.12	-0.28	-0.39
AM Peak	Other	-0.083	0.05	-0.47	-0.24	-0.27	-0.70		
	Commute	-0.065	0.05	-0.22			-0.20		
	Business	-0.074	0.05	-0.11	-0.28		-0.17	-0.44	
Interpeak	Other	-0.083	0.05	-0.41			-0.69		
	Commute	-0.065	0.05	-0.19			-0.17		
PM Peak	Business	-0.074	0.05	-0.10	-0.23		-0.15	-0.31	
	Other	-0.083	0.05	-0.37			-0.59		
	Commute	-0.065	0.05	-0.19			-0.18		

Table 9.2: Realism Test Results – Fuel Cost Elasticity

The arc elasticities calculated are based on the vehicle kilometres from the SATURN simulation and buffer networks, excluding zone connectors. Annual average fuel cost elasticities were calculated by taking the vehicle kilometres for each time period and factoring these up by applying expansion factors from peak periods to daily flows, derived from automatic count data.

As the frequency response is known to be relatively small in relation to the distribution response, θ was given a low value for each user class. The value of θ is a scaling parameter that is influenced by strength of the distribution response controlled by the λ parameter, so that the strength of the frequency response is still lowest for employer's business trips and highest for 'other' trips due to the relative magnitude of the λ parameters for each trip purpose.

With the parameters selected, the reduction in trips for a 10% increase in fuel costs was less than 0.7% in all cases. This is small in comparison to the reduction in vehicle kilometres resulting from the redistribution of trips. The very low reduction in trips is considered realistic in terms of the expected level of trip suppression and also the limited potential for transfer to public transport to impact on highway demand in the study area.

The results show an overall annual fuel cost elasticity of -0.27 for the networkbased analysis, and that the employer's business user class is the least responsive trip purpose and the more discretionary 'other' category is the most responsive. This is in line with the advice in WebTAG Unit M2, which states that the average fuel cost elasticity should lie within the range -0.25 to -0.35. For individual purposes, it suggests that values for employer's business trips should be near to -0.1, discretionary trips near to -0.4, and commuting trips near to the average, although the guidance notes that there is little or no empirical evidence to support this variation.

The overall annual fuel cost elasticity of -0.39 from the matrix-based analysis shows a scale of response slightly outside the target range suggested in WebTAG. Justification for this can be found in the coarseness of external zones and the high level at which highway links are represented in those areas.

The results of the fuel cost elasticity realism test are therefore considered to demonstrate that the demand model is robust, and that the parameters selected will result in appropriate demand responses to changes in travel costs in the forecast traffic model runs.

9.6.2 Journey Time Elasticity

WebTAG lists a requirement for the elasticity of car trips with respect to the change in journey time to be analysed to ensure that the model responds "realistically" to changes in traffic congestion or time savings, for example those resulting from the introduction of the scheme in future year models.

The recommended approach is for the journey time elasticities to be calculated using a single run of the demand model. However, this is not possible in DIADEM and therefore a 'crude method' is used which derives the journey time elasticity using the fuel cost elasticity and the relationship of time and distance related travel cost components in the overall generalised cost formulation. This method was in the past included in WebTAG and the DIADEM user manual and is therefore considered an acceptable alternative.

Rather than being based on the change in vehicle kilometres the journey time elasticity is defined as a change in vehicle trips with respect to changes in journey time. The fuel cost elasticity was therefore recalculated on this basis, so that the journey time elasticity could be derived using the network-wide fuel and time costs for each movement in the model as shown in the formula below.

The formulation used to calculate the journey time elasticity is:

$$\mathbf{e}_{JT} = \mathbf{e}_{fuel} \times \frac{\left(\sum C_{time \ ij} \times T_{ij}\right)}{\left(\sum C_{fuel \ ij} \times T_{ij}\right)}$$

where C_{time} and C_{fuel} are the time and fuel element of the generalised travel costs and *T* is the demand.

The outturn elasticity of car trips with respect to journey time should lie below -2.0.

Table 9.3 shows the journey time elasticity, as calculated using the above methodology. The results indicate that the calculated average annual journey time elasticity is -0.1 and therefore the test has proved satisfactory. The scale of the result also indicates that the margin between the acceptable limit of -2.0 and the actual result of -0.1 is so large that the more detailed method would be very unlikely to result in a different conclusion.

Time Period	User Class	User Class Arc Elasticity	Time Period Arc Elasticity	Daily Arc Elasticity
AM Peak	Employer's Business Other	-0.11 -0.06	-0.09	
Interpeak	Commuter Employer's Business Other Commuter	-0.10 -0.11 -0.09 -0.10	-0.10	-0.10
PM Peak	Employer's Business Other Commuter	-0.09 -0.14 -0.12	-0.12	

Table 9.3: Realism Test Results – Journey Time Elasticity

9.7 Summary

Realism tests have been carried out on the base model to ensure that the model responds realistically to changes in journey costs. The results show that the model's response to changing costs satisfies the criteria set out in the current WebTAG guidance and will therefore provide a robust basis for variable demand modelling in future year scenarios.

10 Conclusions

This report describes the present year validation of the base year traffic model for the M4 Corridor, which has been revised to a base year of 2012. The following time periods have been modelled:

- AM peak hour 08:00 to 09:00;
- Interpeak hour -13:00 to 14:00; and
- PM peak hour 17:00 to 18:00.

An extensive data collection exercise was undertaken to inform the model update. The main basis of the trip matrices remains the Roadside Interview survey data that was collected during Autumn 2005, but these have been augmented by a significant volume of new traffic count data in the study area to allow the trip matrices to be updated to a 2012 base.

The demand has been split into five user classes, which are compatible with the trip purpose/vehicle type groups in the Department for Transport's National Trip End Model, for use in traffic forecasting.

The model validation process has been carried out in accordance with guidance in WebTAG. The documented outcomes demonstrate that the comparisons of modelled with observed values fall within acceptable ranges.

Variable demand modelling will be required in preparing the M4 model traffic forecasts. The base model therefore needed to be tested in order to ensure that it responds realistically to given changes in travel costs. This realism testing has proved satisfactory in respect of changes in fuel costs and journey times in accordance with WebTAG guidance.

The updated M4 traffic model is thus deemed to be suitable to prepare future year traffic forecasts the M4 study area.
Appendix A

M4 Speed-Flow Curves from MIDAS Data

A1 Junction 23a to Junction 24

A2 Junction 24 to Junction 25

A3 Junction 25 to Junction 26

A4 Junction 26 to Junction 27

A5 Junction 27 to Junction 28

A6 Junction 28 to Junction 29

Appendix **B**

Journey Time Validation Graphs

B1 Route 1: M4 J23 (Magor) to J30 (Cardiff Gate)

B1.2 AM Peak – Westbound

B1.3 Inter Peak – Eastbound

B1.4 Inter Peak – Westbound

B1.5 PM Peak – Eastbound

B1.6 PM Peak – Westbound

B2 Route 2: A48 Pentwyn Link to Cypress Drive (via A48(M) and Tredegar Park

B2.1 AM Peak – Clockwise

B2.2 AM Peak – Anticlockwise

B2.3 Inter Peak – Clockwise

B2.4 Inter Peak – Anticlockwise

B2.5 PM Peak – Clockwise

B2.6 PM Peak – Anticlockwise

B3 Route 3: A467 Rogerstone to B4237 / Commercial Road

B3.1 AM Peak – Eastbound

B3.2 AM Peak – Westbound

B3.3 Inter Peak – Eastbound

B3.4 Inter Peak – Westbound

B3.5 PM Peak – Eastbound

B3.6 PM Peak – Westbound

B4 Route 4: A48 Southern Distributor Road, Pont Ebbw to Coldra roundabout

B4.1 AM Peak – Eastbound

B4.2 AM Peak – Westbound

B4.3 Inter Peak – Eastbound

B4.4 Inter Peak – Westbound

B4.5 PM Peak – Eastbound

B4.6 PM Peak – Westbound

B5 Route 5: B4591/Chartist Drive to B4596/J25 roundabout (via Clarence Place Bridge)

B5.1 AM Peak – Eastbound

B5.2 AM Peak – Westbound

B5.3 Inter Peak – Eastbound

B5.4 Inter Peak – Westbound

B5.5 PM Peak – Eastbound

B5.6 PM Peak – Westbound

B6 Route 6: A4051 Malpas Rd to Corporation Rd / A48 (via Clarence Place Bridge)

B6.1 AM Peak – Southbound

B6.2 AM Peak – Northbound

B6.3 Inter Peak – Southbound

B6.4 Inter Peak – Northbound

B6.5 PM Peak – Southbound

B6.6 PM Peak – Northbound

B7 Route 7: A4042 Usk Way (Cwmbran Drive to Southern Distributor Road)

B7.1 AM Peak – Southbound

B7.2 AM Peak – Northbound

B7.3 Inter Peak – Southbound

B7.4 Inter Peak – Northbound

B7.5 PM Peak – Southbound

B7.6 PM Peak – Northbound

B8 Route 8: B4237, Commercial Rd to Coldra roundabout (via George St Bridge)

B8.1 AM Peak – Eastbound

B8.2 AM Peak – Westbound

B8.3 Inter Peak – Eastbound

B8.4 Inter Peak – Westbound

B8.5 PM Peak – Eastbound

B8.6 PM Peak – Westbound

B9 Route 9: A48, Coldra roundabout to B4245 Parkwall roundabout

B9.1 AM Peak – Eastbound

B9.2 AM Peak – Westbound

B9.3 Inter Peak – Eastbound

B9.4 Inter Peak – Westbound

B9.5 PM Peak – Eastbound

B9.6 PM Peak – Westbound

B10 Route 10: B4245 Magor to M48 J2 (Newhouse), via A48 and A466

B10.1 AM Peak – Eastbound

B10.2 AM Peak – Westbound

B10.3 Inter Peak – Eastbound

B10.4 Inter Peak – Westbound

B10.5 PM Peak – Eastbound

B10.6 PM Peak – Westbound

B11 Route 11: M4/M48 Severn Crossings loop (M4 J23a to M4/M5 interchange)

B11.1 AM Peak – Clockwise

B11.2 AM Peak – Anticlockwise

34:00 J23a rbt, Magor 32:00 30:00 M4 toll booths 28:00 J23 w/b 🛏 Surveyed Time on-slip 26:00 24:00 22:00 J22 e/b off-slip 20:00 J20 w/b on-slip Time (mins) 18:00 J21 w/b off-slip 16:00 J20 e/b off-slip 14:00 M5 J16 12:00 Opposite toll booths 10:00 J21 e/b on-slip 08:00 06:00 M48 J2 e/b off-slip 04:00 02:00 J23 e/b off-slip 00:00 5 10 15 30 35 40 45 0 20 25 50 Distance (km)

B11.3 Inter Peak – Clockwise

B11.4 Inter Peak – Anticlockwise

B11.5 PM Peak – Clockwise

B11.6 PM Peak – Anticlockwise

Appendix C

Details of Variable Demand Model Calibration

C1 Variable Demand Model Setup

C1.1 Base Demand

The observed base demand in the M4 traffic model represents highway trips only. Because of the method in which mode choice was included in the demand model it was not necessary to derive a base demand for other modes. Instead, a change in trip frequency was used as a proxy for mode switch. Trips for individual movements were scaled up or down purely on the basis of a change in highway travel costs.

In modelling detailed demand responses, some segmentation by trip and traveller type is essential. At minimum there should be categorisation by trip purpose broken down into commuting, employer's business, and 'other' purposes. In this model private trip demand has been split into these three categories. As set out in WebTAG guidance, commuting trips are treated as doubly constrained, whilst employer's business and 'other' trips are treated as singly production end constrained. This means the origin end is contrained in the AM peak and the destination end in the PM peak. Education trips form part of the 'other' trip purpose.

C1.2 Initial Control Parameters

Initial redistribution parameters for the M4 Variable Demand Model (VDM) were taken from the median illustrative values in WebTAG as shown in Table C1.1.

Trip Purpose	WebTAG Illustrative Median Value	Adopted Value
Car, Home-based work	-0.065	-0.065
Car, Home-based business	-0.067	0.074
Car, Non-home-based business	-0.081	-0.074
Car, Home-based other	-0.090	0.083
Car, Non-home-based other	-0.077	-0.085

Table C1.1: Destination Choice Parameters

Trip frequency parameters were calibrated during realism testing in order to achieve outturn fuel cost and journey time elasticities within the acceptable range specified within WebTAG guidance. The parameter was specified in the form of scaling parameter θ , which controls the trip frequency response relative to the destination choice response. The selected parameter value was used to represent the combined effect of actual trip frequency response (expected to be marginal) and modal switch in the absence of a detailed multi-modal model.

C1.3 Long Distance External Movements

In many variable demand modelling applications it is desirable to freeze certain movements in the trip matrix so that they are not subject to the same variable demand response as other trips. This is most often done for external to external trips, on the basis that the costs are not usually fully modelled for such trips or they are only represented very coarsely.

Spatial segmentation is a feature in DIADEM whereby the distribution model parameter (λ or θ , depending on its position in the hierarchy) can vary according to the origin-destination movement.

For this demand model spatial segmentation has been applied to scale down the sensitivity parameter for external to external movements, thereby effectively lowering the response for these movements to the extent that they are essentially treated as fixed.

C1.4 Cost Damping

WebTAG states that there is some evidence that the sensitivity of demand responses to changes in generalised cost reduces with increasing trip length. In order to ensure that the M4 traffic model met the requirements of the variable demand modelling realism tests, it was necessary to include this variation.

The mechanisms by which this could be achieved are generally referred to as 'cost damping'. The idea behind cost damping is to factor down the changes in travel costs for longer trips so that their sensitivity to individual cost components like fuel cost or travel time is reduced.

If cost damping is employed, it should apply to all trip purposes that are not treated as fixed. While the starting position should be that the same cost damping parameter values are used for both modes, it is sometimes necessary to vary the cost damping parameters between the modes or individual trip purposes in order to achieve satisfactory realism test results.

Cost damping parameters were shown to be necessary following initial realism tests. This conclusion was drawn from the fact that the matrix-based fuel cost elasticity test, which includes long-distance trips representing internal-to-external and external-to-internal movements, initially showed a significantly higher response than the network-based fuel cost elasticity test, which does not include such long-distance movements. Initial cost damping parameters were taken from WebTAG and were adjusted until both the network-based and matrix-based fuel cost elasticity tests gave elasticities within or close to the range specified by the guidance.

The form of the cost damping applied in the M4 model is a function of distance as shown below:

$$G' = \left(\frac{d}{k}\right)^{-\alpha} \cdot \left(t + \frac{c}{VOT}\right)$$

where

are trip time and monetary cost respectively;
is the value of time;
is generalised cost;
is the damped generalised cost;
is the trip length;
are cost damping parameters that need to be calibrated.

WebTAG guidance states that models that have used this form of cost damping have found it necessary to apply a minimum distance cut-off, below which the cost damping does not apply. The purpose of such a cut-off is to prevent short-distance trips, particularly intra-zonal trips, becoming unduly sensitive to cost changes. Where a cut-off is used it is necessary to specify the distance below which generalised costs would not be reduced, that is the distance, d', up to which the full change in generalised cost would apply.

Commonly used parameter values are quoted as follows in WebTAG: $\alpha = 0.5$; k = 30km; and d' = 30km.

The parameters given in WebTAG have been adopted without change for the employer's business and commuter trips. However, a comparison of the results of the network-based and matrix-based fuel cost elasticity realism test by user class need demonstrated the need to scale up the α parameter for the 'other' user class. It was therefore adjusted to 0.55 for the car user class containing 'other' trips.

The effect of the selected cost damping parameters is illustrated in Figure C1.1 using the slight approximation that generalised cost varies linearly with distance for this example. For illustration purposes the graph includes only trips in the length range of 0 to 300km. The figure shows that no adjustment to generalised costs is applied for trips less than 30km in length, whereas a trip of 300km in length is scaled down to around 28-32% of the equivalent undamped generalised cost depending on its trip purpose. Cost damping starts to be applied for trips greater than 30km in length. The reduction in generalised cost demonstrates how much less responsive to cost changes trips over several hundred kilometres in length become in comparison to the same run without cost damping applied.

C1.5 Summary of VDM Setup

A summary checklist of the variable demand model setup in the context of requirements specified in WebTAG is shown in Table C1.2.

Table C1.2. Summary of variable Demand Model Set	Ta	abl	le (C1.	.2:	Summary	of	V	ariabl	e l	Demand	N	1odel	S	betu	p
--	----	-----	------	-----	-----	----------------	----	---	--------	-----	--------	---	--------------	---	------	---

Category	Item	Guidance Document	TAG Unit M2 Reference (Jan 2014 Release)	M4 Model	Comment
	Form of Model	DfT preference is to use an incremental rather than an absolute model	2.5.6	×	Incremental model used
	Trip Frequency Response	For most purposes it is satisfactory to take the observed trip pattern and modify this pattern incrementally by making it respond to changes in travel times & costs	2.6.7	×	Trip frequency response includes proxy for mode choice
	Mode Choice	Where there is limited scope for transfer between modes, the demand model may not require a mode choice element or representation of the costs of alternative modes	2.3.6	1	Mode choice response is approximated by including it in the frequency response
	Time of Day Choice	It is recommended that large 'macro' adjustments only need to be modelled when considering differential pricing between time periods or access restrictions	4.1.2	× .	Time of day choice not required
	Peak Spreading	If congestion during the peak becomes particularly severe HADES can be used to include peak spreading in the VDM responses	4.8.8	- X -	Peak spreading not required
	Destination Choice	It is expected that distribution models will be included in all variable demand models	1.3.1	1	Redistribution response included
VDM Color	Hierarchy of Responses	In the absence of strong evidence to the contrary, the model should adopt the default hierarchy of responses as recommended in Section 4.5 of TAG unit M2	4.5	×	Diadem default is compliant with WebTAG
VDM Setup	Origin or Destination Constraints	In general, doubly constrained models should be used for commuting and education with other purposes typically modelled as singly production-end constrained	4.9.10 & 4.9.11	×	Education trips not modelled separately, but other user classes constrained as specified
	Cost Damping	There is some evidence that the sensitivity of demand responses to changes in generalised cost reduces with increasing trip length	3.3.1	1	Cost damping applied to trips > 30km
	External Movements	There is a suggestion that external to external movements may be treated as fixed	6.4.13	×	External to external trips treated as fixed; zones with buffer centroid connectors > 50km treated as external
	VDM Control Parameters	Preference is to use local data to calibrate parameters, but where that is not possible illustrative parameters should be used	5.6.3	1	Illustrative parameter values used
	Base Demand	It is usually necessary to have a base of trips that can transfer to and from car	Table 2.1	1	Base demand represents highway trips only - total demand required if mode choice is modelled in more detail
	Segmentation by Trip and Traveller Type	Categorisation by trip purpose broken down into commuting, employer's business, and 'other' purposes	Table 2.1	1	Specified categorisation of demand by trip purpose adopted
	Car Availability	Some form of distinction between travellers with and without a car available is very desirable and is expected where mode choice is to be considered	Table 2.1	1	Car availability not included - only required if mode choice is modelled in more detail

C2 Systematic Approach to VDM Calibration

The DfT recommends in WebTAG that a record of all changes made as part of the VDM calibration process should be kept in order to reduce the chances of peculiar combinations of parameter values being selected without a solid evidence base.

Where local data is not available for the calibration of demand response parameters the WebTAG median illustrative values should be adopted in the first instance. Cost damping should not initially be included until the need for it has been illustrated.

Details of all runs that were conducted to derive the adopted parameters for VDM are shown in the model run log included in Section C2.1 of this appendix. The demand model outputs were initially checked based on the network-based fuel cost elasticity realism test in order to gauge whether they were giving sensible outputs. For runs where acceptable outturn elasticities were achieved for the network-based test the matrix-based fuel cost elasticity analysis was then also carried out. The model run log therefore does not show results for the matrix-based fuel cost elasticity for every calibration run if it was not deemed necessary.

The principle of how parameters were derived was as follows:

- Undertake a demand model run with median distribution parameters from WebTAG with no cost damping;
- If necessary, run a second test with cost damping enabled;
- If necessary, run a third test with minimum or maximum distribution parameters and cost damping to assess how far the distribution parameters need to be stretched in order to reach acceptable fuel cost and journey time elasticity's.
- Then run further tests to calibrate the responses until all criteria specified in WebTAG are met.

The adopted values from run 'R007' are highlighted in grey in the model run log. These are the parameters that are proposed for use in traffic forecasting for the M4 model.

A summary of the realism testing process and results in the context of requirements specified in WebTAG is shown in Section C2.2.

C2.1 Record of VDM Parameter Calibration Runs

												NETWORK-	BASED:		MATRIX-B	TRIX-BASED: TERNAL-EXTERNAL MOVEMENTS TO TP ARC ANNUAL ARC					
THUR .	THE			DISTRIPUTION	OFNOTAUTY					0007	5	MULATION + BUFF	EH LINKS ONLY		TOTAL EXCLUDING EXTERNAL	-EXTERNAL MO	DVEMENTS				
HUN	IIME	USER CLASS	%GAP	DISTRIBUTION	SENSITIVITY	60	SIDAMPING	EXT-EXT THIP	S FUEL	COST	PCU-KMS	UC AHC	TP AHC	ANNUALAHG	PCU-KMS UC AHC	IP ARG	ANNUAL ARG	RUN DESCRIPTION	RESULTS ANALYSIS		
U	PEHIOD	Caralana da Daviana		HESPUNSE	A 8	N/A	a (FHUZEN	BASE	TEST	BASE TEST	ELASTICITY	ELASTICITY	ELASTICIT	BASE TEST ELASTICITY	ELASTICITY	ELASTICITY	Description distribution and	Of a bit to a birth and work to an ad		
		Employer's Business	0.000/	Ongin Constrained	-0.074 N/A	NA	N/A N	A Yes	100%	110%	306,708 301,31	3 -0.19	0.00					Hun with redistribution only	Slightly too high network-based		
	AM	Other	0.09%	Ongin Constrained	-0.083 N/A	NA	N/A N	A Yes	100%	110%	232,084 213,97	0 -0.85	-0.32					with median illustrative	outturn fuel cost elasticity. Scale of		
R		Commute		Doubly Constrained	-0.065 N/A	INA	IN/A IN	A Yes	100%	110%	512,146 503,77	5 -0.17						weblaG lambda values.	response for employer's business		
0	10	Employer's Business	0.100/	Ungin Constrained	-0.074 N/A	INA	IN/A IN	A Yes	100%	110%	201,155 196,89	2 -0.22	0.50						and other trip purposes too nign.		
0	IP	Other	0.10%	Origin Constrained	-0.083 N/A	NA	N/A N	A Yes	100%	110%	374,741 348,59	2 -0.76	-0.50	-0.40	NA						
1		Commute		Doubly Constrained	-0.065 N/A	NA	N/A N	A Yes	100%	110%	101,215 99,88	1 -0.14									
		Employer's Business		Destination Constrained	-0.074 N/A	N/A	N/A N	A Yes	100%	110%	294,437 288,57	2 -0.21									
	PM	Other	0.10%	Destination Constrained	-0.083 N/A	N/A	N/A N	A Yes	100%	110%	377,657 354,34	7 -0.67	-0.34								
		Commute		Doubly Constrained	-0.065 N/A	N/A	N/A N	A Yes	100%	110%	413,667 407,84	8 -0.15									
		Employer's Business		Origin Constrained	-0.074 N/A	30,000	0.5 30,	000 Yes	100%	110%	306,708 304,77	4 -0.07						Run with redistribution only run	Slightly too low network-based		
	AM	Other	0.10%	Origin Constrained	-0.083 N/A	30,000	0.5 30,	000 Yes	100%	110%	232,084 222,77	4 -0.43	-0.18					with median illustrative WebTAG	outturn fuel cost elasticity. Scale of		
		Commute	1	Doubly Constrained	-0.065 N/A	30,000	0.5 30,	000 Yes	100%	110%	512,146 505,80	8 -0.13						lambda values. Cost damping	response for commute perhaps a		
		Employer's Business		Origin Constrained	-0.074 N/A	30,000	0.5 30,	000 Yes	100%	110%	201,155 199,55	9 -0.08						added to lower overall	little too low.		
	IP	Other	0.10%	Origin Constrained	-0.083 N/A	30,000	0.5 30,	000 Yes	100%	110%	374,741 362,07	4 -0.36	-0.24	-0.22	N/A			response.			
0		Commute	1	Doubly Constrained	-0.065 N/A	30,000	0.5 30,	000 Yes	100%	110%	101,215 100,23	0 -0.10						-	Run with maximum illustrative		
2		Employer's Business		Destination Constrained	-0.074 N/A	30,000	0.5 30.	000 Yes	100%	110%	294,437 292,20	7 -0.08							values required to check possible		
	PM	Other	0.10%	Destination Constrained	-0.083 N/A	30,000	0.5 30.	000 Yes	100%	110%	377,657 366,22	1 -0.32	-0.18						increase in response.		
		Commute		Doubly Constrained	-0.065 N/A	30,000	0.5 30	000 Yes	100%	110%	413,667 409,29	5 -0.11									
		Employer's Rusiness		Origin Constrained	-0.106 N/A	30,000	0.5 30	100 Ves	100%	110%	306 708 304 02	.0.09			552 734 544 410 -0.16			Bun with redistribution only run	Network-based fuel cost elasticity		
	AM	Other	0.09%	Origin Constrained	-0.133 N/A	30,000	0.5 30	100 Yes	100%	110%	232 084 218 06	0.05	-0.26		327 495 295 781 -1 07	-0.36		with maximum illustrative	ok Matrix-based outturn fuel cost		
		Commute	0.0070	Daubly Constrained	-0.113 N/A	20,000	0.5 00,	100 Yes	100%	110%	E12 1/6 E03 21	0.00			577 209 569 401 -0.16	0.00		WebTAC lambda values. Cost	elasticity showing slightly too		
R		Continute Employer's Rusiness		Origin Constrained	0.100 N/A	30,000	0.5 30,	100 Yes	100%	110%	001 155 100 05	0.10			340,000 340,000 0.00			damping kept as in provinus run	eteres response		
0	ID	Cilipityer's business Other	0.109/	Origin Constrained	-0.100 N/A	30,000	0.5 30,	100 Yes	100%	110%	201,100 190,90	0 -0.12	0.96	0.99	549,000 342,000 -0.20 E90,909 40E 147 1.0E	0.64	0.55	damping kept as in previous run.	strong response.		
0	112	Uther	0.10%	Ungin Constrained	-0.133 INA	30,000	0.5 30,	JUU Tes	100%	110%	3/4,/41 355,54	-0.55	-0.36	-0.32	536,383 485,147 -1.05 -0.64 -0.55		536,383 485,147 -1.05 -0.64 -0.55			These works are be used to	
3		Commute		Doubly Constrained	-0.113 N/A	30,000	0.5 30,	000 Yes	100%	110%	101,215 99,71	4 -0.16			114,819 113,374 -0.13		114,819 113,374 -0.13			These results can be used to	
		Employer's Business		Destination Constrained	-0.106 N/A	30,000	0.5 30,	000 Yes	100%	110%	294,437 291,43	5 -0.11			526,955 518,245 -0.17				inform a finer calibration of the		
	PM	Other	0.10%	Destination Constrained	-0.133 N/A	30,000	0.5 30,	000 Yes	100%	110%	377,657 360,39	3 -0.49	-0.26		529,503 486,488 -0.89	9,503 486,488 -0.89 -0.41		86,488 -0.89 -0.41			lambda parameters.
		Commute		Doubly Constrained	-0.113 N/A	30,000	0.5 30,	000 Yes	100%	110%	413,667 407,49	1 -0.16			462,265 456,207 -0.14						
		Employer's Business		Origin Constrained	-0.090 N/A	30,000	0.5 30,	000 Yes	100%	110%	306,708 304,37	4 -0.08						Run with redistribution only run			
	AM	Other	0.12%	Origin Constrained	-0.090 N/A	30,000	0.5 30,	000 Yes	100%	110%	232,084 222,00	6 -0.47	-0.20					with calibrated lambda values			
D		Commute	1	Doubly Constrained	-0.090 N/A	30,000	0.5 30,	000 Yes	100%	110%	512,146 504,39	9 -0.16						based on previous runs. Cost			
		Employer's Business		Origin Constrained	-0.090 N/A	30,000	0.5 30,	000 Yes	100%	110%	201,155 199,23	B -0.10						damping kept as in previous run.			
	IP	Other	0.07%	Origin Constrained	-0.090 N/A	30,000	0.5 30.	000 Yes	100%	110%	374,741 361,04	4 -0.39	-0.27	-0.24	N/A						
0		Commute	1	Doubly Constrained	-0.090 N/A	30,000	0.5 30	100 Yes	100%	110%	101,215 99,93	2 -0.13									
4		Employer's Business		Destination Constrained	-0.090 N/A	30,000	0.5 30	000 Yes	100%	110%	294 437 291 80	-0.09									
	PM	Other	0 10%	Destination Constrained	-0.090 N/A	30,000	0.5 30	000 Yes	100%	110%	377 657 365 37	2 -0.35	-0.20								
		Commute		Doubly Constrained	-0.090 N/A	30,000	0.5 30	100 Vec	100%	110%	413 667 408 36	0 -0 14									
		Employar's Rusinass		Origin Constrained	-0.090 N/A	30,000	0.5 30		100%	11096	306 708 304 37	-0.08			552 734 546 306 -0.12			Bup with redistribution only run	Besult is good for network-based		
	AM	Other	0.109/	Origin Constrained	0.005 N/A	30,000	0.5 30,	100 Yes	100%	110%	222.004 221.40	4 0.00	0.22		202,734 040,300 -0.12 207,40E 202,021 0.70	0.29		with better calibrated lambda	and matrix based outturn fuel cost		
	Alw I	Control	0.10%	Origin Constrained	-0.000 N/A	30,000	0.0 30,	V00 Yes	100%	11076	E10.140 E00.00	4 -0.45	-0.22		527,485 503,621 -0.78	-0.20		with better cambrated fambua	and mainx-based outdin ider cost		
R		Commute		Doubly Constrained	-0.110 IWA	30,000	0.5 30,	700 Tes	100%	110%	512,146 503,26	4 -0.10			5/7,298 566,614 -0.16			Values based on previous runs.	elasticity. Commuter response		
0		Employer's Business	0.000	Ungin Constrained	-0.090 N/A	30,000	0.5 30,	JUU Yes	100%	110%	201,155 199,24	-0.10		0.00	349,066 343,438 -0.17			Cost damping kept as in previous	signly on the weak side, but ok.		
0	IP	Uther	0.08%	Ungin Constrained	-0.095 N/A	30,000	0.5 30,	JUU Yes	100%	110%	3/4,/41 360,38	5 -0.41	-0.28	-0.26	536,383 498,610 -0.77	-0.48	-0.42	run.	These parameters can be used if		
5		Commute		Doubly Constrained	-0.110 N/A	30,000	0.5 30,	JUU Yes	100%	110%	101,215 99,73	8 -0.15			114,819 113,396 -0.13				no frequency response as proxy		
-		Employer's Business		Destination Constrained	-0.090 N/A	30,000	0.5 30,	000 Yes	100%	110%	294,437 291,78	5 -0.09			526,955 519,388 -0.15				for mode choice is required.		
	PM	Other	0.06%	Destination Constrained	-0.095 N/A	30,000	0.5 30,	000 Yes	100%	110%	377,657 364,62	3 -0.37	-0.21		529,503 497,214 -0.66	-0.32					
		Commute		Doubly Constrained	-0.110 N/A	30,000	0.5 30,	000 Yes	100%	110%	413,667 407,55	7 -0.16			462,265 456,265 -0.14						
		Employer's Business		Origin Constrained	-0.074 0.05	30,000	0.5 30,	000 Yes	100%	110%	306,708 304,10	0.09						Run with redistribution &	Overall annual network-based		
	AM	Other	0.10%	Origin Constrained	-0.083 0.05	30,000	0.5 30,	000 Yes	100%	110%	232,084 221,13	4 -0.51	-0.24					frequency response with	outturn fuel cost elasticity is ok,		
		Commute		Doubly Constrained	-0.065 0.05	30,000	0.5 30,	000 Yes	100%	110%	512,146 501,68	8 -0.22						median illustrative lambda	but response of 'other' users is a		
		Employer's Business		Origin Constrained	-0.074 0.05	30,000	0.5 30.	000 Yes	100%	110%	201,155 199,14	1 -0.11						values. Cost damping kept as in	little bit strong.		
	IP	Other	0.07%	Origin Constrained	-0.083 0.05	30,000	0.5 30,	000 Yes	100%	110%	374,741 359,33	7 -0.44	-0.30	-0.28	N/A			previous run.			
		Commute	1	Doubly Constrained	-0.065 0.05	30,000	0.5 30.	000 Yes	100%	110%	101,215 99,43	0 -0.19									
6		Employer's Business		Destination Constrained	-0.074 0.05	30,000	0.5 30	000 Yes	100%	110%	294,437 291.59	1 -0.10									
	PM	Other	0.09%	Destination Constrained	-0.083 0.05	30,000	0.5 30	000 Yes	100%	110%	377,657 363.72	0 -0.39	-0.24								
		Commute	1	Doubly Constrained	-0.065 0.05	30,000	0.5 30	000 Yes	100%	110%	413,667 406.15	5 -0.19									
	_	Employer's Business		Origin Constrained	-0.074 0.05	30,000	0.5 30	000 Yes	100%	110%	306708 304.09	0.00			552 734 546 239 -0.12	_		Bun with redistribution &	Besult is ok for network-based fuel		
	AM	Other	0.11%	Origin Constrained	-0.083 0.05	30,000	0.55 20	100 Ver	100%	1109	232 084 221 94	0 .0.47	-0.24		327 495 306 256 0.70	J0 28		fraguency response with median	cost electicity. Matrix, based result		
	7.00	Commute	0.1176	Doubly Constrained	-0.065 0.05	30,000	0.5 30	100 Ver	100%	110%	512 1/6 501 69	-0.47	-0.24		577 298 566 411 0 20	-0.20		illustrative lambda values. Cost	shaws strong response which is		
R	_	Conditioned Durain		Origin Constrained	-0.065 0.05	20,000	0.5 30,	100 Yes	100%	11076	012,140 001,68	-0.22			040,000 040,001 0.47			damping increased marginally	sonsible based on long distance		
0	ID	Ciripioyer's Business	0.000	Origin Constrained	-0.074 0.05	30,000	0.5 30,	100 Yes	100%	110%	201,155 199,13	-0.11	0.00	0.07	349,066 343,601 -0.17	0.11	0.20	for 'other' years compared to	extrint trips Sensible that		
0	P	Outer	0.06%	Ungin Constrained	-0.083 0.05	30,000	0.55 30,	Yes Ve	100%	110%	3/4,/41 360,40	-0.41	-0.28	-0.27	536,363 502,325 -0.69	-0.44	-0.39	nor other users compared to	exemples in ID is higher through		
7		Commute		Doubly Constrained	-0.065 0.05	30,000	0.5 30,	Yes	100%	110%	101,215 99,43	-0.19			114,819 112,946 -0.17			previous run.	response in iP is nigher than peak		
		Employer's Business		Destination Constrained	-0.074 0.05	30,000	0.5 30,	000 Yes	100%	110%	294,437 291,58	5 -0.10			526,955 519,494 -0.15				response. Elasticities for individual		
	PM	Other	0.08%	Destination Constrained	-0.083 0.05	30,000	0.55 30,	000 Yes	100%	110%	377,657 364,64	8 -0.37	-0.23		529,503 500,325 -0.59	-0.31			user classes also sensible.		
		Commute		Doubly Constrained	-0.065 0.05	30,000	0.5 30,	000 Yes	100%	110%	413,667 406,15	7 -0.19			462,265 454,428 -0.18						
		Employer's Business		Origin Constrained	-0.074 N/A	30,000	0.5 30,	000 Yes	100%	110%	306,708 304,73	6 -0.07						Run with redistribution	This run was created to analyse		
	AM	Other	0.09%	Origin Constrained	-0.083 N/A	30,000	0.55 30,	000 Yes	100%	110%	232,084 223,20	0 -0.41	-0.17					response only with median	the relative influence of each VDM		
R		Commute	1	Doubly Constrained	-0.065 N/A	30,000	0.5 30,	000 Yes	100%	110%	512,146 505,72	8 -0.13						illustrative lambda values. Cost	response.		
0		Employer's Business		Origin Constrained	-0.074 N/A	30,000	0.5 30.	000 Yes	100%	110%	201,155 199.54	5 -0.08						damping kept as in previous run.	78% of total response (change in		
0	IP	Other	0.06%	Origin Constrained	-0.083 N/A	30,000	0.55 30.	000 Yes	100%	110%	374,741 362.89	2 -0.34	-0.23	-0.21	N/A			This run was carried out in order	car veh-kms in network-based		
7		Commute	1	Doubly Constrained	-0.065 N/A	30,000	0.5 30	000 Yes	100%	110%	101,215 100.22	5 -0.10						to determine the amount of overall	analysis) is due to redistribution		
1 x		Employer's Rusiness		Destination Constrained	-0.074 N/A	30,000	0.5 90	100 Yes	100%	110%	294 437 202 20	an n.						response that is due to the	and 22% due to trip frequency		
	PM	Other	0.09%	Destination Constrained	-0.083 N/A	30,000	0.55 90	100 Yes	100%	110%	377 657 366 08	3 _0.00	-0.17					redistribution & frequency	response.		
1 1		Commute	0.0070	Doubly Constrained	-0.065 NVA	30,000	0.5 90	100 Vec	100%	1109/	A13.667 A00.90	3 _0.11						response separately			
		personal fighte		o cooly consulation	0.000 NVA	1 00,000	0.0 30,	100	10076	110/0		-J.II			1						

C2.2 Summary of Realism Testing

Table C2.1: Summary of Realism Testing

Category	Item	Guidance Document	TAG Unit M2 Reference (Jan 2014 Release)	M4 Model	Comment
	Cost Damping	Initial tests to be carried out without cost damping and should then be introduced if the need is demonstrated	6.4.9 & 6.5.4	× .	Initial fuel cost elasticity realism tests showed a need for cost damping
		Values should lie within 25% of WebTAG median illustrative values	6.5.6	1	Median illustrative λ values adopted
	Sensitivity Parameters (A)	A record of all the changes made and their results should be kept and made available if requested	6.5,6	1	All model runs recorded and archived
	Convergence	Convergence parameter should demonstrate that the solution is in close proximity to the true equilibrium and stable (%GAP < 0.1%)	6.3.8	× .	Model runs meet convergence criteria and solutions are stable
	Scaling Parameters (0)	In the absence of mode choice response theta parameters for frequency response should be inflated as a proxy for mode choice	4.7.3	1	θ parameters inflated as a proxy for mode choice and resulting effect on number of trips monitored in realism tests
		A network-based and a matrix-based fuel cost test is to be carried out	6.4.13	1	Both fuel cost elasticity tests have been carried out
Realism Testing	Car Fuel Cost Elasticity	Elasticity of car kilometres with respect to fuel cost should be between -0.25 and -0.35	6.4.17	× .	Fuel Cost Elasticity: Network-based: -0.27; Matrix-based: -0.39. But matrix-based analysis includes long journeys which show a stronger response due to coarse zone system in external areas.
		Annual average elasticities for employers' business trips should be near to -0.1, for discretionary trips near to -0.4	6.4.17	*	Outturn fuel cost elasticities show the correct trend by trip purpose
		the pattern of all-purpose elasticities shows peak period elasticities which are lower than inter-peak elasticities	6.4.17	1	Outturn fuel cost elasticities show the correct trend by time period
		Journey time elasticities should be calculated using a single run of the demand model	6.4.27	1	This test cannot be undertaken in Diadem
	Car Journey Time Elasticity	Journey time elasticities should be calculated from both a model run and on a matrix basis using times from the networks	6.4.28	1	This test cannot be undertaken in Diadem
		Elasticity of car trips with respect to journey time should be <-2.0	6.4.28	× 1	Using the crude method outlined in previous versions of WebTAG gives a journey time elasticity of -0.1
	Sensitivity Testing	Sensitivity testing should be undertaken for sensitivity parameters that govern the individual demand mechanisms (i.e. the λ values) by increasing them by +50% of the mean	6.6.2	×	Sensitivity test shows acceptable level of change to outturn network-based fuel cost elasticity (-0.38).

C3 Spatial Analysis of Demand Response

Changes applied to the demand matrix by the VDM process need to be checked rigorously in order to give confidence in the realism of the results produced when using the adopted parameter values. A sector system, shown in Figure C3.1, was set up in order to undertake a spatial analysis of the demand response of run 'R007'. The changes in the demand matrix presented in this section are those resulting from a 10% increase in fuel cost as used in the fuel cost realism test. Relative increases are shown in green and relative reductions are shown in red.

The sector system reflects the following areas:

- Sector 1 & 2 represent the wider Cardiff and Newport area respectively. In the summarising results these sectors are referred to as the 'core' area.
- Sector 3 to 6 represent broadly a 30km cordon around the centre of Cardiff & Newport. The 30km boundary was selected because cost damping is applied to trips greater than 30km in length. These sectors are referred to as the 'buffer' area in the summarising sector analysis.
- Sectors 7 to 12 represent areas in the rest of Great Britain outside the 30km cordon. These are referred to as 'external' in the summary analysis. It should be noted that 'external' in this context does not refer to exactly the same as the long distance external zones for which demand is frozen.

Figure C3.1: Sector System used for VDM Response Check

all units in													
PCUs			AM Pea	k			Inter	Peak			PM	Peak	
	Sector	Core	Buffer	Ext	Total	Core	Buffer	Ext	Total	Core	Buffer	Ext	Total
	Core	13	-2	-13	-1	11	-1	-12	-2	13	7	1	21
Employer's	Buffer	8	2	-7	3	4	1	-7	-2	-2	2	-1	-1
Busiliess	Ext	0	-1	-4	-5	-1	-1	-2	-3	-13	-11	-5	-29
	Total	21	-1	-24	-3	14	-1	-21	-7	-2	-3	-4	-9
	Core	91	-49	-61	-20	118	-70	-75	-27	105	13	0	118
	Buffer	17	5	-30	-8	24	5	-49	-20	-69	9	-3	-63
'Other'	Ext	-1	0	-10	-11	-3	-5	-11	-19	-63	-42	-14	-119
	Total	106	-44	-101	-38	139	-70	-134	-65	-27	-20	-17	-63
	Core	-19	-29	-28	-76	-13	-9	-4	-25	-24	-37	-14	-75
	Buffer	-49	-1	2	-49	-8	0	0	-8	-24	-1	1	-25
Commuter	Ext	-27	0	5	-22	-4	0	1	-3	-22	-4	3	-23

-25

-9

-3

-37

-70

-42

-11

-123

Table C3.1: Demand Matrix Changes in Fuel Cost Realism Test

Table C3.2: Relative Demand Matrix Changes in Fuel Cost Realism Test

-147

-95

-30

-21

			AM Peak				Inte	r Peak			PM P	eak	
	Sector	Core	Buffer	Ext	Total	Core	Buffer	Ext	Total	Core	Buffer	Ext	Total
	Core	0.5%	-0.3%	-2.2%	0.0%	0.5%	-0.2%	-2.7%	-0.1%	0.3%	0.7%	0.2%	0.4%
Employer's	Buffer	0.6%	0.7%	-1.3%	0.1%	0.7%	0.3%	-2.0%	-0.1%	-0.3%	0.5%	-0.2%	-0.1%
Business	Ext	0.0%	-0.3%	-0.6%	-0.3%	-0.1%	-0.3%	-0.4%	-0.3%	-2.6%	-2.0%	-0.7%	-1.6%
	Total	0.5%	0.0%	-1.3%	0.0%	0.5%	-0.1%	-1.7%	-0.1%	0.0%	-0.1%	-0.3%	-0.1%
					· · · · ·								
	Core	1.1%	-3.4%	-16.2%	-0.2%	1.0%	-3.7%	-15.2%	-0.2%	0.8%	0.5%	0.0%	0.8%
	Buffer	1.1%	0.6%	-9.3%	-0.3%	1.1%	0.4%	-8.4%	-0.5%	-3.0%	0.8%	-0.7%	-1.6%
'Other'	Ext	-0.3%	0.1%	-2.8%	-1.1%	-0.6%	-1.0%	-1.4%	-1.1%	-14.5%	-7.3%	-2.2%	-7.3%
	Total	1.1%	-1.7%	-9.6%	-0.3%	1.0%	-2.0%	-7.4%	-0.3%	-0.2%	-0.5%	-1.1%	-0.3%
	Core	-0.2%	-1.1%	-3.2%	-0.6%	-0.4%	-1.1%	-3.1%	-0.6%	-0.3%	-1.0%	-2.1%	-0.6%
	Buffer	-1.1%	-0.1%	0.1%	-0.7%	-1.0%	0.1%	-0.1%	-0.6%	-1.2%	-0.1%	0.2%	-0.7%
Commuter	Ext	-2.8%	0.0%	0.9%	-1.1%	-2.7%	0.0%	0.7%	-0.7%	-3.0%	-0.3%	0.8%	-0.9%
	Total	-0.6%	-0.7%	-0.8%	-0.7%	-0.6%	-0.7%	-0.8%	-0.6%	-0.6%	-0.7%	-0.7%	-0.6%

Employer's business users show approximately a 0.1% reduction in trips in response to a 10% increase in fuel cost throughout the day. For 'other' and commuter trips the overall reduction is around 0.3% and 0.7% respectively. This highlights that employer's business trips are least sensitive and commuter trips are most sensitive to changes in travel cost.

The redistribution response for employer's business and 'other' trips is origin constrained in the AM and inter peak. Consequently the change in origin totals is relatively balanced throughout the model, whereas for destinations a shift from external to core zones is evident for these trip purposes. The PM peak for these trip purposes is destination constrained and therefore the opposite pattern is evident with origins shifting from external to core zones. So, despite an increase in travel cost the number of trips internal to the core area increase to compensate for a reduction in trips between the core area and buffer and external areas.

For commuter trips the distribution response is doubly constrained. Therefore, the reduction in origin and destination totals is relatively balanced throughout all areas of the model. However, it is noticeable that there is a shift in trip patterns with a relatively high percentage reduction in trips between external and core and buffer and core compared to the much lower percentage reduction in trips internal to the core area. An increase in external-external trips is also evident. This is necessary to compensate for the redistribution of trips which have shortened in trip length by shifting one trip end from the external area to the buffer or core area.

Detailed outputs for each time period's car user classes are shown in Table C3.3 to Table C3.11. They show a more detailed sector-to-sector breakdown of the shift in trip patterns. It should be noted that only percentage changes are illustrated. Movements that stand out as not following the trend are often due to very low total demand for these movements in the base year matrix. The core sectors 1 and 2 contain by far the most number of trips in the matrix. Therefore, even small percentage changes in these cells reflect potentially significant changes in terms of total trip numbers.

Total	12	11	10	9	8	7	6	5	4	3	2	1	Sector
-0.1%	-2.3%	-3.3%	-4.0%	-1.8%	-2.6%	-0.4%	-0.2%	0.0%	-0.5%	-0.3%	0.5%	1.0%	1
0.0%	-2.6%	-3.1%	-2.7%	9.5%	-2.0%	-1.1%	0.0%	-0.3%	-1.1%	-1.2%	0.4%	0.0%	2
-0.2%	-1.7%	-2.0%	-1.5%	-0.9%	0.0%	0.2%	0.3%	0.5%	0.0%	0.0%	0.5%	1.4%	3
0.3%	-2.4%	-2.9%	-2.6%	-0.8%	0.0%	-0.1%	6.0%	0.5%	1.4%	0.0%	1.5%	0.8%	4
0.2%	-1.9%	-0.7%	-3.6%	-0.6%	-1.4%	7.9%	0.3%	0.7%	-0.4%	-1.1%	0.3%	0.6%	5
-0.1%	-2.7%	-3.2%	-2.5%	-2.1%	-2.1%	0.3%	1.1%	0.2%	-0.6%	-0.4%	0.9%	0.3%	6
-0.2%	0.0%	0.0%	-0.3%	-0.5%	-1.6%	0.7%	1.0%	-0.1%	-0.6%	-0.5%	0.0%	0.1%	7
-0.3%	0.1%	-1.1%	-0.9%	0.0%	0.0%	-0.6%	0.5%	0.3%	-4.4%	0.0%	0.6%	0.7%	8
-0.3%	-0.5%	-1.2%	-1.5%	1.4%	0.0%	0.3%	0.9%	1.1%	-0.3%	-1.0%	0.0%	0.5%	9
-0.3%	0.5%	-0.4%	5.4%	-0.9%	-1.1%	1.0%	-0.3%	-0.3%	-0.4%	-0.6%	-0.2%	-0.4%	10
-0.3%	0.0%	0.0%	0.0%	-0.7%	-1.1%	0.2%	0.1%	-0.2%	-0.7%	-0.5%	-0.1%	-0.3%	11
-0.3%	0.0%	0.0%	-0.6%	2.6%	-1.4%	0.3%	0.1%	-0.1%	-0.7%	-0.9%	0.1%	-0.4%	12
0.0%	1 20/	2 10/	2 5%	0 10/	1 69/	0.6%	0.6%	0.0%	0.6%	0.6%	0 /0/	0.5%	Total

Table C3.3:	Relative	Changes	in D	emand i	in AM	Peak	Business	Trips
				••••••				

Table C3.4: Relative Changes in Demand in AM Peak 'Other' Trips

Sector	1	2	3	4	5	6	7	8	9	10	11	12	Total
	2.3%	0.0%	-4.3%	-5.4%	-3.4%	-7.5%	-10.1%	-13.8%	-11.6%	-21.5%	-19.0%	-16.7%	-0.3%
2	-2.2%	1.1%	-10.4%	-8.9%	-2.0%	-3.0%	-10.3%	-15.9%	-13.2%	-17.3%	-20.8%	-16.6%	-0.2%
	3.4%	-2.5%	0.0%	0.0%	-5.0%	-3.8%	-8.1%	0.0%	-13.6%	-24.0%	-11.3%	-11.9%	-0.7%
	1.2%	4.0%	0.0%	0.0%	-1.6%	-3.1%	-5.4%	0.0%	-18.5%	-13.7%	-9.0%	-11.6%	0.5%
	-1.6%	1.8%	-6.8%	-4.8%	-0.2%	1.9%	-4.6%	-8.5%	-2.6%	-13.6%	-14.5%	-16.7%	-0.4%
	-4.9%	0.1%	-8.7%	-6.1%	-2.3%	2.5%	-2.9%	-11.4%	-4.4%	-15.4%	-10.5%	-11.4%	-0.5%
	-1.3%	2.1%	0.0%	0.0%	-3.7%	1.1%	3.2%	-10.3%	-6.7%	-2.4%	0.0%	0.0%	-0.9%
8	1.1%	-0.4%	0.0%	-18.1%	1.2%	-1.0%	-8.8%	0.0%	0.0%	-5.9%	-0.4%	-6.9%	-1.1%
	-1.0%	0.5%	4.8%	3.6%	4.7%	3.3%	-0.9%	-3.8%	0.9%	0.3%	-9.9%	-2.7%	-1.1%
10	-2.7%	0.1%	-3.2%	-3.6%	-0.2%	-0.2%	0.5%	-6.2%	-1.6%	0.0%	-11.1%	1.9%	-1.3%
11	-3.3%	-5.2%	-2.5%	-2.8%	-0.4%	-1.4%	0.0%	3.7%	-2.3%	-0.9%	0.0%	0.0%	-1.5%
12	-0.3%	1.0%	0.0%	0.0%	1.6%	0.1%	-4.2%	-0.5%	-5.0%	-1.9%	0.0%	0.0%	-1.2%
Total	1.2%	1.0%	-5.3%	-5.9%	-1.9%	0.6%	-3.5%	-8.7%	-8.0%	-13.9%	-13.8%	-11.4%	-0.3%

Table C3.5: Relative Changes in Demand in AM Peak Commuter Trips

Sector	1	2	3	4	5	6	7	8	9	10	11	12	Total
	1.1%	-2.1%	0.9%	0.2%	-2.7%	-7.1%	-5.2%	-1.0%	-2.9%	-4.0%	-3.2%	-3.4%	-0.6%
2	-2.3%	0.1%	-3.0%	-1.4%	0.2%	-3.3%	-3.7%	-2.0%	-3.4%	-3.1%	-2.2%	-1.8%	-0.6%
	1.1%	-3.8%	0.0%	2.3%	-3.0%	-6.4%	-3.9%	0.0%	-3.2%	-4.9%	0.6%	-1.8%	-0.9%
	-0.3%	-0.9%	1.4%	8.0%	-0.7%	-4.2%	-1.6%	2.6%	0.7%	-0.9%	-0.7%	-0.7%	-0.6%
	-2.5%	-0.4%	-0.3%	0.0%	1.9%	-0.6%	-2.3%	2.2%	2.9%	1.2%	-0.4%	-0.8%	-0.7%
	-5.3%	-2.2%	-4.4%	-3.4%	-1.5%	1.1%	0.9%	-1.8%	-1.1%	-2.5%	0.3%	0.5%	-0.6%
	-4.0%	-2.4%	-1.3%	-0.1%	-1.9%	1.5%	1.0%	0.7%	-0.5%	2.1%	0.0%	0.0%	-0.9%
8	-1.2%	-2.1%	0.0%	0.0%	-0.2%	-3.0%	-0.4%	0.0%	3.1%	0.1%	0.0%	1.3%	-1.3%
	-3.2%	-3.4%	0.0%	0.1%	3.1%	0.6%	0.4%	6.0%	4.4%	2.7%	2.0%	0.9%	-1.0%
10	-4.4%	-4.1%	-0.7%	-1.0%	-1.3%	-1.6%	0.5%	2.2%	2.2%	0.0%	2.9%	0.7%	-1.0%
11	-4.0%	-2.8%	0.9%	0.6%	-0.7%	-0.4%	0.9%	0.0%	3.6%	14.2%	0.0%	0.0%	-1.2%
12	-3.2%	-2.3%	0.0%	0.5%	-0.6%	0.1%	-0.8%	2.1%	2.1%	2.1%	7.0%	0.0%	-1.2%
Total	-0.7%	-0.6%	-0.7%	-0.6%	-0.7%	-0.7%	-0.8%	-0.7%	-0.8%	-0.8%	-0.7%	-0.8%	-0.7%

Sector	1	2	3	4	5	6	7	8	9	10	11	12	Total
1	1.0%	0.6%	-0.5%	-0.4%	-0.1%	-0.1%	-1.0%	-2.4%	-2.2%	-4.1%	-3.9%	-1.9%	-0.1%
2	-0.3%	0.4%	-1.1%	-1.1%	-0.1%	0.3%	-1.2%	-2.9%	-2.0%	-5.1%	-3.5%	-2.0%	-0.1%
3	1.4%	0.5%	0.0%	-0.8%	0.0%	-0.2%	-1.3%	0.0%	-1.1%	-3.5%	-1.9%	-0.3%	-0.2%
4	1.1%	1.1%	0.0%	2.3%	0.6%	0.4%	0.0%	-0.4%	-1.3%	-2.8%	-3.0%	-1.3%	-0.2%
5	-0.2%	0.8%	-0.4%	-0.7%	0.6%	0.2%	-0.9%	-2.1%	-1.1%	-3.8%	-3.1%	-2.3%	-0.1%
6	-0.4%	0.4%	-0.8%	-0.6%	0.0%	0.7%	0.3%	-2.0%	-1.8%	-2.4%	-2.8%	-2.3%	-0.1%
7	-0.4%	0.1%	-0.6%	-0.7%	-0.1%	0.9%	0.9%	-2.0%	-1.1%	-0.5%	0.0%	-0.7%	-0.2%
8	0.6%	0.5%	0.0%	-4.2%	0.0%	-0.4%	-0.8%	0.0%	-2.2%	-0.8%	-0.5%	-0.2%	-0.3%
9	0.9%	0.6%	-0.5%	-0.5%	0.8%	-0.2%	-0.2%	-2.1%	0.7%	-1.3%	-1.9%	-0.9%	-0.3%
10	-0.6%	-0.4%	-1.0%	-0.8%	-0.4%	0.5%	0.9%	-0.1%	-0.7%	2.1%	-0.9%	0.0%	-0.3%
11	-0.5%	-0.3%	-1.0%	-0.7%	-0.4%	-0.1%	0.4%	-0.6%	0.6%	0.2%	0.0%	0.0%	-0.3%
12	-0.3%	0.3%	-0.5%	-0.6%	-0.3%	0.1%	0.4%	-0.8%	-0.2%	-1.2%	0.0%	0.0%	-0.3%
Total	0.5%	0.5%	-0.7%	-0.6%	0.0%	0.4%	-0.5%	-1.3%	-1.1%	-2.7%	-2.7%	-1.4%	-0.1%

Table C3.6: Relative Changes in Demand in Interpeak Business Trips

Table	C3.7:	Relative	Changes i	n Demand	in l	[nterpeak	'Other'	Trips

Sector	1	2	3	4	5	6	7	8	9	10	11	12	Total
	2.5%	0.0%	-3.5%	-4.3%	-4.4%	-7.6%	-9.8%	-12.4%	-12.0%	-19.8%	-19.4%	-15.0%	-0.3%
2	-3.1%	0.9%	-9.0%	-8.1%	-2.6%	-3.7%	-9.8%	-15.6%	-15.0%	-18.5%	-21.8%	-15.6%	-0.1%
	4.2%	-0.9%	10.9%	-3.1%	-2.0%	-2.9%	-3.0%	0.0%	-13.5%	-15.2%	-15.4%	-8.2%	-0.7%
	3.0%	2.0%	0.0%	17.9%	-0.6%	-2.4%	-4.4%	-13.5%	-6.3%	-13.9%	-13.4%	-11.4%	-0.7%
	-2.9%	1.5%	-6.5%	-4.7%	1.4%	-0.6%	-6.8%	-10.9%	-3.2%	-12.3%	-15.6%	-10.5%	-0.4%
	-3.4%	-0.2%	-6.0%	-4.4%	-0.4%	1.8%	-1.0%	-7.7%	-6.1%	-10.9%	-12.6%	-7.3%	-0.4%
	-1.2%	0.4%	-4.8%	-2.8%	-1.4%	1.7%	4.8%	-8.3%	-6.5%	-2.7%	0.0%	-12.8%	-0.8%
8	2.8%	2.5%	0.0%	-4.4%	2.2%	-1.2%	-5.2%	0.0%	-2.7%	-5.3%	-1.4%	-4.4%	-1.2%
	-1.7%	1.6%	-2.5%	-1.8%	3.4%	0.7%	-0.1%	-2.6%	0.4%	-3.3%	-6.1%	-3.5%	-1.0%
10	-4.8%	-2.3%	-6.6%	-5.2%	-1.8%	-0.9%	2.2%	1.1%	3.1%	-9.5%	-3.3%	3.7%	-1.2%
11	-3.2%	-2.2%	-5.1%	-3.3%	-3.0%	-0.4%	0.9%	1.4%	-6.4%	1.7%	0.0%	0.0%	-1.3%
12	-1.9%	-0.2%	-4.5%	-4.4%	-1.5%	0.9%	2.2%	-3.6%	1.4%	2.4%	0.0%	0.0%	-1.1%
Total	1.2%	0.9%	-5.3%	-5.0%	-2.1%	-0.5%	-2.9%	-5.1%	-7.7%	-11.5%	-11.2%	-8.3%	-0.3%

Table C3.8: Relative Changes in Demand in Inter Peak Commuter Trips

Sector	1	2	3	4	5	6	7	8	9	10	11	12	Total
	0.7%	-2.3%	1.1%	0.3%	-2.6%	-6.7%	-5.0%	-1.5%	-1.8%	-3.4%	-4.4%	-4.9%	-0.4%
2	-3.0%	-0.3%	-2.3%	-2.1%	-0.6%	-2.4%	-3.4%	-2.3%	-2.7%	-4.7%	-1.8%	-3.3%	-0.7%
	0.4%	-2.4%	0.0%	0.0%	1.1%	-7.4%	-2.6%	0.0%	0.0%	-3.6%	0.0%	-1.7%	-0.8%
	-0.4%	-1.5%	4.3%	15.3%	-0.6%	-5.0%	-0.9%	0.0%	3.3%	-0.6%	1.4%	0.0%	-0.9%
	-3.6%	0.0%	-2.2%	-1.1%	1.7%	-2.1%	-4.3%	-0.2%	1.0%	-1.8%	2.6%	-2.1%	-0.7%
	-6.4%	-1.8%	-3.5%	-3.3%	-0.5%	0.8%	1.7%	-1.8%	-2.3%	-0.6%	-0.5%	0.6%	-0.4%
	-4.1%	-1.7%	-2.1%	-0.1%	-0.5%	0.8%	0.3%	-0.1%	-2.0%	0.2%	0.0%	0.0%	-0.6%
8	-1.5%	-2.0%	0.0%	14.3%	1.5%	-1.9%	0.3%	0.0%	0.0%	0.0%	0.0%	0.0%	-0.8%
	-2.1%	-2.4%	2.5%	3.2%	5.6%	-2.7%	2.2%	4.1%	4.0%	2.4%	-2.4%	0.0%	-0.6%
10	-5.8%	-2.8%	-4.3%	-0.4%	1.6%	-1.3%	1.1%	1.1%	2.8%	0.0%	2.9%	1.6%	-0.6%
11	-2.8%	-1.3%	-4.0%	-0.5%	-1.5%	-0.8%	13.3%	2.0%	0.0%	3.2%	0.0%	0.0%	-1.0%
12	-4.0%	-2.4%	1.0%	0.6%	-0.5%	-0.6%	-1.6%	-0.4%	0.0%	0.5%	0.0%	0.0%	-0.8%
Total	-0.7%	-0.6%	-0.6%	-0.6%	-0.6%	-0.8%	-0.8%	-0.8%	-0.8%	-0.9%	-0.7%	-0.8%	-0.6%

Sector	1	2	3	4	5	6	7	8	9	10	11	12	Total
1	0.9%	-0.1%	1.4%	1.1%	0.2%	-0.2%	0.0%	0.8%	0.6%	-0.2%	-0.3%	0.1%	0.6%
2	0.6%	0.2%	0.8%	0.9%	0.6%	0.7%	0.6%	0.6%	0.7%	-0.1%	-0.1%	0.5%	0.3%
3	-0.6%	-1.6%	0.0%	0.3%	-1.7%	-1.2%	-0.4%	0.0%	-0.6%	-0.7%	-0.8%	-0.3%	-0.9%
4	-0.5%	-0.9%	0.0%	1.1%	-0.7%	-0.5%	-0.4%	-1.0%	0.1%	-0.6%	-0.6%	-0.4%	-0.6%
5	-0.2%	-0.2%	0.4%	0.9%	0.3%	0.9%	-0.3%	0.3%	0.6%	-0.1%	-0.2%	-0.1%	0.0%
6	-0.9%	0.3%	0.4%	0.1%	0.5%	1.2%	1.0%	-0.2%	1.1%	-1.4%	0.1%	0.6%	0.5%
7	-1.1%	-1.4%	0.0%	0.0%	-0.7%	0.2%	0.0%	-1.0%	-0.1%	0.7%	0.9%	1.2%	-0.4%
8	-2.3%	-1.3%	0.0%	0.0%	-1.6%	-1.8%	-1.5%	0.0%	-1.0%	-1.0%	-0.7%	-1.1%	-1.3%
9	-2.1%	-2.8%	-1.3%	-1.3%	-0.1%	-1.9%	-0.6%	0.0%	0.0%	-0.5%	-0.4%	-0.7%	-1.0%
10	-4.0%	-3.0%	-1.4%	-3.4%	-3.0%	-4.5%	-0.1%	-1.2%	-0.6%	5.4%	-0.1%	-0.4%	-2.3%
11	-4.2%	-3.2%	-2.0%	-3.3%	-3.0%	-2.9%	0.0%	-0.5%	-1.8%	-1.0%	0.0%	0.0%	-2.5%
12	-2.4%	-2.8%	-1.4%	-2.4%	-2.1%	-1.7%	0.0%	0.1%	-1.0%	0.2%	0.0%	0.0%	-1.4%
Total	-0.1%	0.0%	-0.2%	-0.2%	-0.1%	-0.1%	-0.2%	-0.2%	-0.2%	-0.3%	-0.3%	-0.3%	-0.1%

Table C3.9: Relative Changes in Demand in PM Peak Business Trips

Sector	1	2	3	4	5	6	7	8	9	10	11	12	Total
	2.2%	-3.0%	3.8%	2.2%	-2.8%	-5.7%	-0.2%	2.7%	2.6%	-2.4%	-3.6%	-2.1%	0.9%
2	-0.6%	0.8%	-0.8%	0.8%	1.0%	0.0%	-0.2%	2.4%	2.3%	-1.2%	-1.1%	0.7%	0.7%
	-2.4%	-8.5%	0.0%	0.5%	-2.9%	-7.7%	-4.0%	0.0%	-2.1%	-3.3%	-5.0%	-3.7%	-3.6%
	-4.2%	-6.5%	0.0%	0.0%	-2.9%	-6.0%	-1.7%	0.0%	3.9%	-3.4%	-6.3%	-2.2%	-4.7%
	-3.5%	-1.7%	-2.4%	-0.9%	0.9%	-0.9%	0.0%	3.7%	4.6%	-1.5%	-1.2%	-2.0%	-1.5%
	-7.3%	-3.5%	-0.7%	-4.3%	0.1%	2.2%	2.5%	-1.2%	-0.4%	0.7%	-4.1%	2.7%	-0.3%
	-9.9%	-8.8%	-3.9%	-4.7%	-5.4%	-1.4%	0.0%	-0.7%	-2.4%	0.7%	0.0%	0.0%	-3.5%
8	-13.0%	-15.8%	0.0%	0.0%	-10.5%	-9.5%	-6.4%	0.0%	-2.3%	-0.3%	2.3%	-3.5%	-5.0%
	-13.3%	-11.2%	-9.5%	-8.5%	-1.2%	-6.7%	-1.5%	-3.0%	0.5%	-3.2%	-3.1%	0.8%	-6.8%
10	-18.7%	-24.0%	-15.2%	-15.3%	-12.1%	-8.8%	-2.2%	-3.1%	-6.1%	0.0%	0.0%	-1.2%	-11.4%
11	-19.0%	-19.1%	-7.5%	-12.6%	-14.0%	-14.2%	0.0%	-8.2%	-3.4%	8.4%	0.0%	0.6%	-12.6%
12	-14.5%	-14.8%	-10.4%	-9.6%	-9.1%	-8.2%	0.0%	-3.7%	-7.5%	0.7%	2.2%	0.0%	-8.5%
Total	-0.3%	-0.1%	-0.7%	-0.6%	-0.4%	-0.4%	-0.8%	-1.1%	-1.0%	-1.1%	-1.1%	-1.1%	-0.3%

Table C3.11: Relative Changes in Demand in PM Peak Commuter Trips

Sector	1	2	3	4	5	6	7	8	9	10	11	12	Total
	1.0%	-2.2%	1.0%	0.0%	-2.3%	-6.4%	-3.3%	-0.9%	-2.2%	-3.6%	-3.3%	-2.8%	-0.5%
2	-1.9%	-0.1%	-1.9%	-1.4%	-0.2%	-2.6%	-1.6%	-1.8%	-1.8%	-5.0%	-2.0%	-1.8%	-0.6%
	0.8%	-3.8%	0.0%	0.0%	-0.9%	-5.9%	-1.2%	0.0%	0.0%	0.9%	-0.4%	-0.2%	-0.8%
	-0.2%	-1.9%	0.0%	7.7%	0.1%	-5.1%	-1.3%	0.0%	-0.3%	-1.8%	0.3%	0.2%	-0.9%
	-2.4%	-0.1%	-0.8%	-0.5%	1.0%	-0.9%	-1.1%	0.2%	2.9%	0.2%	0.0%	-1.4%	-0.7%
	-5.8%	-2.9%	-3.7%	-3.6%	-0.9%	0.6%	1.5%	-1.6%	-0.4%	-3.2%	-0.2%	0.1%	-0.6%
	-4.5%	-2.6%	-1.2%	-1.0%	-1.7%	0.4%	0.0%	0.3%	-0.8%	0.3%	4.9%	0.0%	-0.8%
8	-1.8%	-2.2%	0.0%	1.5%	-0.3%	-2.4%	0.5%	0.0%	4.3%	0.4%	1.6%	0.9%	-1.2%
	-1.9%	-3.0%	-2.5%	0.5%	1.9%	-1.9%	1.2%	3.5%	4.2%	0.2%	1.4%	0.0%	-1.0%
10	-4.4%	-3.9%	-0.3%	-0.3%	0.0%	-4.1%	2.4%	2.9%	2.1%	0.0%	8.8%	1.8%	-1.1%
11	-3.5%	-1.8%	0.0%	-1.6%	-1.2%	-0.6%	0.0%	0.0%	1.9%	1.5%	0.0%	6.2%	-1.1%
12	-3.8%	-2.9%	-0.3%	0.5%	-0.7%	-0.9%	0.0%	1.3%	-0.5%	0.2%	0.0%	0.0%	-1.0%
Total	-0.6%	-0.6%	-0.6%	-0.6%	-0.6%	-0.8%	-0.7%	-0.7%	-0.7%	-0.9%	-0.8%	-0.7%	-0.6%